SKP06N60 SKA06N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Similar documents
Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

SKP15N60 SKW15N60. Fast IGBT in NPT-technology with soft, fast recovery anti-parallel Emitter Controlled Diode

Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

Fast IGBT in NPT-technology with soft, fast recovery anti-parallel EmCon diode

SGP20N60 SGW20N60. Fast IGBT in NPT-technology

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

PG-TO I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62

TrenchStop Series. P t o t 270 W

TrenchStop Series. Low Loss DuoPack : IGBT in TrenchStop and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

IKW40N120T2 TrenchStop 2 nd Generation Series

IGW25T120. TrenchStop Series

TrenchStop Series I C

IGW15T120. TrenchStop Series

IKW50N60TA q. Low Loss DuoPack : IGBT in TRENCHSTOP TM and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

SKP10N60 SKB10N60, SKW10N60

Soft Switching Series

60 30 Pulsed collector current, t p limited by T jmax I Cpuls 90 Turn off safe operating area V CE 900V, T j 175 C - 90 Diode forward current

Soft Switching Series I C I F I FSM

IGP03N120H2 IGW03N120H2

TRENCHSTOP Series. Low Loss IGBT: IGBT in TRENCHSTOP and Fieldstop technology. Maximum Ratings Parameter Symbol Value Unit.

SGP30N60HS SGW30N60HS

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 40 Turn off safe operating area V CE 600V, T j 150 C - 40.

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 62 Turn off safe operating area V CE 600V, T j 150 C - 62.

SGB02N120. Fast IGBT in NPT-technology. Power Semiconductors 1 Rev. 2_3 Jan 07

I C P tot 138 W

TRENCHSTOP Series. Low Loss DuoPack : IGBT in TRENCHSTOP and Fieldstop technology with soft, fast recovery anti-parallel Emitter Controlled HE diode

I C. A Pulsed collector current, t p limited by T jmax I Cpuls 3.5 Turn off safe operating area V CE 1200V, T j 150 C - 3.

IGD06N60T q. IGBT in TRENCHSTOP and Fieldstop technology. TRENCHSTOP Series. IFAG IPC TD VLS 1 Rev. 2.2,

IDP30E120. Fast Switching Diode. Product Summary V RRM 1200 V I F 30 A V F 1.65 V T jmax 150 C

SGP20N60, SGB20N60, SGW20N60

SGP30N60, SGB30N60, SGW30N60

Silicon Carbide Schottky Diode IDH05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

IDP45E60. Fast Switching Diode. Product Summary V RRM 600 V I F 45 A V F 1.5 V T jmax 175 C. Features 600V Emitter Controlled technology

Product Summary V RRM 600 V I F 23 A V F 1.5 V T jmax 175 C 600V diode technology

CoolMOS Power Transistor

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor

CoolMOS Power Transistor

BSS123. Rev K/W. R thja

SPP08P06P H. SIPMOS Power-Transistor V DS -60 V I D T C = 25 C T C = 100 C. I D puls E AS I D = -8.8 A, V DD = -25 V, R GS = 25 W

CoolMOS Power Transistor

Product Summary Drain source voltage. Lead free Yes I D. I D puls -320 E AS. P tot 340 W

CoolMOS TM Power Transistor

2 nd Generation thinq! TM SiC Schottky Diode

2 nd Generation thinq! TM SiC Schottky Diode

CoolMOS TM Power Transistor

CoolMOS TM Power Transistor

CoolMOS Power Transistor

CoolMOS TM Power Transistor

Rev Maximum Ratings, at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current I D.

OptiMOS 2 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM Power-Transistor

OptiMOS 2 Power-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-Transistor

TRENCHSTOP TM RC-Series for hard switching applications. IGBT chip with monolithically integrated diode in packages offering space saving advantage

OptiMOS 3 Power-Transistor

OptiMOS 3 Power-Transistor

OptiMOS TM Power-MOSFET

Silicon Carbide Schottky Diode IDM05G120C5. 5 th Generation thinq! 1200 V SiC Schottky Diode. Rev

OptiMOS 2 Small-Signal-Transistor

OptiMOS TM Power-MOSFET

OptiMOS TM P3 Power-Transistor

CoolMOS Power Transistor

OptiMOS -5 Power-Transistor

OptiMOS P2 Small-Signal-Transistor

Dual N-Channel OptiMOS MOSFET

Product Summary Drain source voltage. Maximum Ratings,at T j = 25 C, unless otherwise specified Parameter Symbol Value Unit Continuous drain current

OptiMOS TM Power-Transistor

OptiMOS (TM) 3 Power-Transistor

Product Summary Drain source voltage V DS -60 V Drain-source on-state resistance R DS(on) 8 W Continuous drain current I D A

OptiMOS 2 Power-Transistor

SIPMOS Small-Signal-Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM Power-MOSFET

OptiMOS Small-Signal-Transistor

OptiMOS 2 Small-Signal-Transistor

BSS 223PW. ESD Class; JESD22-A114-HBM Class 0. Product Summary V DS -20 V R DS(on) 1.2 Ω I D A. Qualified according to AEC Q101

OptiMOS -5 Power-Transistor

OptiMOS TM 3 Power-Transistor

CoolMOS TM Power Transistor

BSS670S2L. OptiMOS Buck converter series. Avalanche rated 1) Qualified according to AEC Q101 Halogen-free according to IEC

SIPMOS Small-Signal-Transistor

OptiMOS (TM) 3 Power-Transistor

OptiMOS 2 Power-Transistor

CoolMOS Power Transistor

SIPMOS Small-Signal-Transistor

OptiMOS TM 3 Power-Transistor

OptiMOS -T Power-Transistor

OptiMOS TM Power-MOSFET

CoolMOS TM Power Transistor

OptiMOS 2 + OptiMOS -P 2 Small Signal Transistor

OptiMOS -5 Power-Transistor

OptiMOS TM -T2 Power-Transistor

OptiMOS 3 Power-MOSFET

Transcription:

Fast IGBT in NPTtechnology with soft, fast recovery antiparallel Emitter Controlled Diode 75% lower E off compared to previous generation combined with low conduction losses Short circuit withstand time 10 s Designed for: Motor controls, Inverter NPTTechnology for 600V applications offers: very tight parameter distribution high ruggedness, temperature stable behaviour parallel switching capability Very soft, fast recovery antiparallel Emitter Controlled Diode Isolated TO220, 2.5kV, 60s Pbfree lead plating; RoHS compliant Qualified according to JEDEC 1 for target applications Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/ PGTO22031 (TO220AB) G C E PGTO220331 / 111 (FullPAK) Type V CE I C V CE(sat) T j Marking Package 600V 6A 2.3V 150 C K06N60 PGTO22031 600V 5A 2.3V 150 C K06N60 PGTO220331 / 111 1 JSTD020 and JESD022 1 Rev. 2.4 12.06.2013

Maximum Ratings Parameter Symbol Value Unit Collectoremitter voltage V C E 600 600 V DC collector current T C = 25 C T C = 100 C I C 12 Pulsed collector current, t p limited by T jmax I C p ul s 24 24 Turn off safe operating area V CE 600V, T j 150 C 24 24 Diode forward current T C = 25 C T C = 100 C 6.9 12 Diode pulsed current, t p limited by T jmax p ul s 24 24 Gateemitter voltage V G E 20 20 V Short circuit withstand time 2 V GE = 15V, V CC 600V, T j 150 C Power dissipation T C = 25 C 6 9 5.0 12 t S C 10 10 P t o t 68 32 Mounting Torque, Screw: M2.5 (Fullpak), M3 (TO220) 3 M 0.6 0.5 Nm Operating junction and storage temperature T j, T s t g 55...+150 55...+150 C Soldering temperature wavesoldering, 1.6 mm (0.063 in.) from case for 10s 6 A s W T s 260 260 C 2 Allowed number of short circuits: <1000; time between short circuits: >1s. 3 Maximum mounting processes: 3 2 Rev. 2.4 12.06.2013

Thermal Resistance Parameter Symbol Conditions Max. Value Unit Characteristic IGBT thermal resistance, junction case Diode thermal resistance, junction case Thermal resistance, junction ambient R t h J C 1.85 3.9 K/W R t h J C D 3.5 5.0 R t h J A PGTO22031 62 PGTO220331 /111 65 Electrical Characteristic, at T j = 25 C, unless otherwise specified Parameter Symbol Conditions Value min. Typ. max. Unit Static Characteristic Collectoremitter breakdown voltage V ( B R ) C E S V G E =0V, I C =500 A 600 V Collectoremitter saturation voltage V C E ( s a t ) V G E = 15V, I C =6A T j =25 C T j =150 C Diode forward voltage V F V G E =0V, =6A T j =25 C T j =150 C Gateemitter threshold voltage V G E ( t h) I C =250 A,V C E =V G E 3 4 5 Zero gate voltage collector current I C E S V C E =600V,V G E =0V T j =25 C T j =150 C Gateemitter leakage current I G E S V C E =0V,V G E =20V 100 na Transconductance g f s V C E =20V, I C =6A 4.2 S Dynamic Characteristic Input capacitance C i s s V C E =25V, Output capacitance C o s s V G E =0V, 38 46 Reverse transfer capacitance C r s s f=1mhz 23 28 Gate charge Q G a t e V C C =480V, I C =6A Internal emitter inductance measured 5mm (0.197 in.) from case V G E =15V Short circuit collector current 2) I C ( S C ) V G E =15V,t S C 10 s V C C 600V, T j 150 C 1.7 1.2 2.0 2.3 1.4 1.25 2.4 2.8 1.8 1.65 20 700 A 350 420 pf 32 42 nc L E 7 nh 60 A 2) Allowed number of short circuits: <1000; time between short circuits: >1s. 3 Rev. 2.4 12.06.2013

Switching Characteristic, Inductive Load, at T j =25 C Parameter Symbol Conditions IGBT Characteristic Value min. typ. max. Turnon delay time t d ( o n ) T j =25 C, 25 30 ns Rise time t r V C C =400V,I C =6A, V G E =0/15V, 18 22 Turnoff delay time t d ( o f f ) R G =50, 220 264 1 ) Fall time t f L =180nH, 54 65 1 ) C =250pF Turnon energy E o n 0.110 0.127 mj Energy losses include Turnoff energy E o f f tail and diode 0.105 0.137 Total switching energy E t s reverse recovery. 0.215 0.263 AntiParallel Diode Characteristic Diode reverse recovery time t r r t S t F T j =25 C, V R =200V, =6A, di F /dt=200a/ s Diode reverse recovery charge Q r r 200 nc Diode peak reverse recovery current I r r m 2.8 A Diode peak rate of fall of reverse di r r /dt 180 A/ s recovery current during t b 200 17 183 Unit ns Switching Characteristic, Inductive Load, at T j =150 C Parameter Symbol Conditions IGBT Characteristic Value min. typ. max. Turnon delay time t d ( o n ) T j =150 C 24 29 ns Rise time t r V C C =400V,I C =6A, V G E =0/15V, 17 20 Turnoff delay time t d ( o f f ) R G =50, 248 298 1 Fall time t L ) f =180nH, 70 84 1 C ) =250pF Turnon energy E o n 0.167 0.192 Energy losses include Turnoff energy E o f f tail and diode 0.153 0.199 mj Total switching energy E t s reverse recovery. 0.320 0.391 AntiParallel Diode Characteristic Diode reverse recovery time t r r t S t F T j =150 C V R =200V, =6A, di F /dt=200a/ s Diode reverse recovery charge Q r r 500 nc Diode peak reverse recovery current I r r m 5.0 A Diode peak rate of fall of reverse di r r /dt 200 A/ s recovery current during t b 290 27 263 Unit ns 1) Leakage inductance L and Stray capacity C due to dynamic test circuit in Figure E. 4 Rev. 2.4 12.06.2013

30A I c t p =2 s 10A 15 s IC, COLLECTOR CURRENT 20A 10A T C =80 C T C =110 C I c 0A 10Hz 100Hz 1kHz 10kHz 100kHz IC, COLLECTOR CURRENT 1A 50 s 200 s 1ms DC 0.1A 1V 10V 100V 1000V f, SWITCHING FREQUENCY V CE, COLLECTOREMITTER VOLTAGE Figure 1. Collector current as a function of switching frequency (T j 150 C, D = 0.5, V CE = 400V, V GE = 0/+15V, R G = 50 ) Figure 2. Safe operating area (D = 0, T C = 25 C, T j 150 C) 80W Ptot, POWER DISSIPATION 60W 40W 20W IC, COLLECTOR CURRENT 10A 5A 0W 25 C 50 C 75 C 100 C 125 C 0A 25 C 50 C 75 C 100 C 125 C T C, CASE TEMPERATURE Figure 3. Power dissipation as a function of case temperature (T j 150 C) T C, CASE TEMPERATURE Figure 4. Collector current as a function of case temperature (V GE 15V, T j 150 C) 5 Rev. 2.4 12.06.2013

20A 20A 15A 15A IC, COLLECTOR CURRENT 10A 5A V GE =20V 15V 13V 11V 9V 7V 5V IC, COLLECTOR CURRENT 10A 5A V GE =20V 15V 13V 11V 9V 7V 5V 0A 0V 1V 2V 3V 4V 5V V CE, COLLECTOREMITTER VOLTAGE Figure 5. Typical output characteristics (T j = 25 C) 0A 0V 1V 2V 3V 4V 5V V CE, COLLECTOREMITTER VOLTAGE Figure 6. Typical output characteristics (T j = 150 C) IC, COLLECTOR CURRENT 20A 18A 16A 14A 12A 10A 8A 6A 4A 2A T j =+25 C 55 C +150 C 0A 0V 2V 4V 6V 8V 10V VCE(sat), COLLECTOREMITTER SATURATION VOLTAGE 4.0V 3.5V 3.0V 2.5V 2.0V 1.5V 1.0V I C = 12A I C = 6A 50 C 0 C 50 C 100 C 150 C V GE, GATEEMITTER VOLTAGE Figure 7. Typical transfer characteristics (V CE = 10V) T j, JUNCTION TEMPERATURE Figure 8. Typical collectoremitter saturation voltage as a function of junction temperature (V GE = 15V) 6 Rev. 2.4 12.06.2013

t d(off) t d(off) t, SWITCHING TIMES 100ns t f t, SWITCHING TIMES 100ns t f t d(on) t d(on) t r t r 10ns 0A 3A 6A 9A 12A 15A I C, COLLECTOR CURRENT Figure 9. Typical switching times as a function of collector current (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, R G = 50, 10ns 0 50 100 150 R G, GATE RESISTOR Figure 10. Typical switching times as a function of gate resistor (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, I C = 6A, 5.5V t, SWITCHING TIMES 100ns t d(off) t f t d(on) t r 10ns 0 C 50 C 100 C 150 C VGE(th), GATEEMITTER THRESHOLD VOLTAGE 5.0V 4.5V 4.0V 3.5V 3.0V 2.5V 2.0V max. typ. min. 50 C 0 C 50 C 100 C 150 C T j, JUNCTION TEMPERATURE Figure 11. Typical switching times as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V, I C = 6A, R G = 50, T j, JUNCTION TEMPERATURE Figure 12. Gateemitter threshold voltage as a function of junction temperature (I C = 0.25mA) 7 Rev. 2.4 12.06.2013

0.8mJ *) E on and E ts include losses due to diode recovery. 0.6mJ *) E on and E ts include losses due to diode recovery. E ts * E ts * E, SWITCHING ENERGY LOSSES 0.6mJ 0.4mJ 0.2mJ E on * E off E, SWITCHING ENERGY LOSSES 0.4mJ 0.2mJ E off E on * 0.0mJ 0A 3A 6A 9A 12A 15A I C, COLLECTOR CURRENT Figure 13. Typical switching energy losses as a function of collector current (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, R G = 50, 0.0mJ 0 50 100 150 R G, GATE RESISTOR Figure 14. Typical switching energy losses as a function of gate resistor (inductive load, T j = 150 C, V CE = 400V, V GE = 0/+15V, I C = 6A, 0.4mJ *) E on and E ts include losses due to diode recovery. E ts * E, SWITCHING ENERGY LOSSES 0.3mJ 0.2mJ 0.1mJ E on * E off 0.0mJ 0 C 50 C 100 C 150 C T j, JUNCTION TEMPERATURE Figure 15. Typical switching energy losses as a function of junction temperature (inductive load, V CE = 400V, V GE = 0/+15V, I C = 6A, R G = 50, 8 Rev. 2.4 12.06.2013

25V 1nF 20V C iss VGE, GATEEMITTER VOLTAGE 15V 10V 5V 120V 480V C, CAPACITANCE 100pF C oss C rss 0V 0nC 15nC 30nC 45nC 10pF 0V 10V 20V 30V Q GE, GATE CHARGE Figure 16. Typical gate charge (I C = 6A) V CE, COLLECTOREMITTER VOLTAGE Figure 17. Typical capacitance as a function of collectoremitter voltage (V GE = 0V, f = 1MHz) 25 s 100A tsc, SHORT CIRCUIT WITHSTAND TIME 20 s 15 s 10 s 5 s 0 s 10V 11V 12V 13V 14V 15V IC(sc), SHORT CIRCUIT COLLECTOR CURRENT 80A 60A 40A 20A 0A 10V 12V 14V 16V 18V 20V V GE, GATEEMITTER VOLTAGE Figure 18. Short circuit withstand time as a function of gateemitter voltage (V CE = 600V, start at T j = 25 C) V GE, GATEEMITTER VOLTAGE Figure 19. Typical short circuit collector current as a function of gateemitter voltage (V CE 600V, T j = 150 C) 9 Rev. 2.4 12.06.2013

500ns 1000nC trr, REVERSE RECOVERY TIME 400ns 300ns 200ns 100ns = 3A = 12A = 6A Qrr, REVERSE RECOVERY CHARGE 800nC 600nC 400nC 200nC = 12A = 6A = 3A 0ns 50A/ s 150A/ s 250A/ s 350A/ s 450A/ s 550A/ s di F /dt, DIODE CURRENT SLOPE Figure 20. Typical reverse recovery time as a function of diode current slope (V R = 200V, T j = 125 C, 0nC 50A/ s 150A/ s 250A/ s 350A/ s 450A/ s 550A/ s di F /dt, DIODE CURRENT SLOPE Figure 21. Typical reverse recovery charge as a function of diode current slope (V R = 200V, T j = 125 C, 12A 600A/ s 10A 500A/ s Irr, REVERSE RECOVERY CURRENT 8A 6A 4A 2A = 6A = 12A = 3A d irr/ d t, DIODE PEAK RATE OF FALL OF REVERSE RECOVERY CURRENT 400A/ s 300A/ s 200A/ s 100A/ s 0A 50A/ s 150A/ s 250A/ s 350A/ s 450A/ s 550A/ s di F /dt, DIODE CURRENT SLOPE Figure 22. Typical reverse recovery current as a function of diode current slope (V R = 200V, T j = 125 C, 0A/ s 50A/ s 150A/ s 250A/ s 350A/ s 450A/ s 550A/ s di F /dt, DIODE CURRENT SLOPE Figure 23. Typical diode peak rate of fall of reverse recovery current as a function of diode current slope (V R = 200V, T j = 125 C, 10 Rev. 2.4 12.06.2013

2.0V 12A IF, FORWARD CURRENT 10A 8A 6A 4A 150 C 100 C 25 C VF, FORWARD VOLTAGE 1.5V = 12A = 6A 2A 55 C 0A 0.0V 0.5V 1.0V 1.5V 2.0V V F, FORWARD VOLTAGE Figure 24. Typical diode forward current as a function of forward voltage 1.0V 40 C 0 C 40 C 80 C 120 C T j, JUNCTION TEMPERATURE Figure 25. Typical diode forward voltage as a function of junction temperature 10 1 K/W D=0.5 ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 0 K/W 10 1 K/W 0.2 0.1 0.05 0.02 0.01 single pulse R, ( K / W ), ( s ) 0.523 7.25*10 2 0.550 6.44*10 3 0.835 7.13*10 4 1.592 7.16*10 5 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 ZthJCD, TRANSIENT THERMAL IMPEDANCE 10 0 K/W 10 1 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 single pulse R, ( K / W ), ( s ) 2.852 1.887 0.654 4.64*10 2 0.665 2.88*10 3 0.828 3.83*10 4 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 10 2 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s 10 2 K/W 10µs 100µs 1ms 10ms 100ms 1s 10s t p, PULSE WIDTH Figure 26. Diode transient thermal impedance as a function of pulse width (D = t p / T) t p, PULSE WIDTH Figure 27. Diode transient thermal impedance as a function of pulse width (D = t p / T) 11 Rev. 2.4 12.06.2013

10 1 K/W ZthJC, TRANSIENT THERMAL IMPEDANCE 10 0 K/W 10 1 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 10 2 K/W single pulse R, ( K / W ), ( s ) 0.705 0.0341 0.561 3.74E3 0.583 3.25E4 R 1 R 2 C 1= 1/R 1 C 2= 2/R 2 10 3 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s t p, PULSE WIDTH Figure 28. IGBT transient thermal impedance as a function of pulse width (D = t p / T) ZthJC, TRANSIENT THERMAL IMPEDANCE 10 0 K/W 10 1 K/W 10 2 K/W D=0.5 0.2 0.1 0.05 0.02 0.01 R, ( K / W ), ( s ) 2.73 1.83 0.395 2.93*10 2 0.353 2.46*10 3 0.323 3.45*10 4 R 1 R 2 single pulse C 1= 1/R 1 C 2= 2/R 2 10 3 K/W 1µs 10µs 100µs 1ms 10ms 100ms 1s 10s t p, PULSE WIDTH Figure 29. IGBT transient thermal impedance as a function of pulse width (D = t p / T) 12 Rev. 2.4 12.06.2013

PGTO22031 13 Rev. 2.4 12.06.2013

Please refer to mounting instructions 14 Rev. 2.4 12.06.2013

i,v di F /dt t =t Q =Q + t r r S F + Q r r S F t r r I F t S t F Q S Q F 10% I r r m t I r r m di 90% I r r m r r /dt V R Figure C. Definition of diodes switching characteristics T (t) j 1 r1 2 r 2 r n n p(t) r r 1 2 n r Figure A. Definition of switching times T C Figure D. Thermal equivalent circuit Figure B. Definition of switching losses Figure E. Dynamic test circuit Leakage inductance L =180nH and Stray capacity C =250pF. 15 Rev. 2.4 12.06.2013

Published by Infineon Technologies AG 81726 Munich, Germany 2013 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of noninfringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. The Infineon Technologies component described in this Data Sheet may be used in lifesupport devices or systems and/or automotive, aviation and aerospace applications or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that lifesupport, automotive, aviation and aerospace device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. 16 Rev. 2.4 12.06.2013