Aragonite undersaturation in the western Arctic Ocean

Similar documents
OCB Summer Workshop WHOI, July 16-19,

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

Carbon Dioxide, Alkalinity and ph

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Ocean Acidification: What It Means To Alaska

A method for estimating the sea-air CO 2 flux in the Pacific Ocean

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

シミュレーション物理 6 運動方程式の方法 : 惑星の軌道 出席のメール ( 件名に学生番号と氏名 ) に, 中点法をサブルーチンを使って書いたプログラムを添付

Background. Background. Objective. Table of Contents 11/16/2012. Effects of wind erosion on water balance in a crop field in the Sahel, West Africa

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

Typical Arctic profiles. How to form halocline water? 2012 Changing Arctic Ocean 506E/497E - Lecture 7 - Woodgate

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

Impact of changing Siberian land-shelf-basin on the Arctic Ocean biogeochemical dynamics

Catastrophic reduction of seaice in the Arctic Ocean - its impact on the marine ecosystems in the polar region-

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Future ocean acidification in the Canada Basin and surrounding Arctic Ocean from CMIP5 earth system models

Distributions of dissolved inorganic carbon and total alkalinity in the Western Arctic Ocean

Potential Impact of climate change and variability on the Intra-Americas Sea (IAS)

京都 ATLAS meeting 田代. Friday, June 28, 13

Increase in acidifying water in the western Arctic Ocean

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Weather Data Quality improvement Planning

Making Sediments: Biogenic Production, Carbonate Saturation and Sediment Distributions

Halocline structure in the Canada Basin of the Arctic Ocean

GEOCHEMICAL TRACERS OF ARCTIC OCEAN CIRCULATION

Liverpool NEMO Shelf Arctic Ocean modelling

Illustrating SUSY breaking effects on various inflation models

Detailed monitoring of nutrient supply through tidal front in Seto Inland Sea, Japan

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Satellite tools and approaches

1 Carbon - Motivation

Chemical Oceanography Spring 2000 Final Exam (Use the back of the pages if necessary)(more than one answer may be correct.)

Introduction to Multi-hazard Risk-based Early Warning System in Japan

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

GEOPHYSICAL RESEARCH LETTERS, VOL. 38, L16602, doi: /2011gl047885, 2011

Analysis of shale gas production performance by SGPE

高分解能 GSMaP アルゴリズムの 構造と考え方 牛尾知雄 ( 大阪大 )

Influence of MJO on Asian Climate and its Performance of JMA Monthly Forecast Model

How to form halocline water?

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

Taking an advantage of innovations in science and technology to develop MHEWS

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

1. Introduction 2. Ocean circulation a) Temperature, salinity, density b) Thermohaline circulation c) Wind-driven surface currents d) Circulation and

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

Where is all the water?

October 7, Shinichiro Mori, Associate Professor

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

The unification of gravity and electromagnetism.

Absolute Calibration for Brewer Spectrophotometers and Total Ozone/UV Radiation at Norikura on the Northern Japanese Alps

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Biogeochemistry of the Earth System QMS Lecture 5 Dr Zanna Chase 16 June 2015

Thermal Safety Software (TSS) series

What makes the Arctic hot?

galaxy science with GLAO

Title. Author(s)Maslowski, Wieslaw. Citation 地球温暖化による劇変を解明する. 平成 20 年 6 月 24 日. 札幌市. Issue Date Doc URL. Type.

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

Freshwater and brine behaviors in the Arctic Ocean deduced from historical data of D 18 O and alkalinity ( A.D.)

Numerical Experiments with Multi-Models for Paleo-Environmental Problems

Safer Building and Urban Development ( 安全な建物づくり まちづくりづ ) Contents ( 内容 ) 1)Lessons from building damage by earthquake motions and/or tsunami ( 振動被害または

Multi-Scale Simulations for Adaptation to Global Warming and Mitigation of Urban Heat Islands

Gas exchange of CO 2 and O 2 in partially ice-covered regions of the Arctic Ocean investigated using in situ sensors

CO2 in atmosphere is influenced by pco2 of surface water (partial pressure of water is the CO2 (gas) that would be in equilibrium with water).

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Deep moist atmospheric convection in a subkilometer

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

Yutaka Shikano. Visualizing a Quantum State

SML-811x/812x/813x Series

Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Ocean Sediments. Key Concepts

Answer to reviewers The answers to the reviewers comments are indicated in italics

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Pacific ventilation of the Arctic Ocean s lower halocline by upwelling and diapycnal mixing over the continental margin

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Earth Planet Water. Earth 71% Formation of Water on Planet. Nearly ¾ of Earth s surface is covered by liquid water More covered by solid water

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, d 18 O, and nutrients

超新星残骸からの陽子起源ガンマ線 放射スペクトルの変調機構

Development of Advanced Simulation Methods for Solid Earth Simulations

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

Christopher K. H. Guay 1, Fiona A. McLaughlin 2, and Michiyo Yamamoto-Kawai 2. Canada

Product Specification

SNOW/ICE ~ 雪氷災害 ~ LESSON 6

-the 1st lecture- Yoshitaka Fujita Osaka University. Snake of March 16-20, 2015

Ocean Sediments OCN Nov 2016

Study of Cloud and Precipitation Processes Using a Global Cloud-system Resolving Model

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

Mid-Term #1 (125 points total)

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

69 地盤の水分変化モニタリング技術 比抵抗モニタリングシステムの概要 * 小林剛 Monitoring Technology for a Moisture Change of Subsurface Outline of the Resistivity Monitoring System Tsuyo

Ocean Acidification the other CO2 problem..

ATOC OUR CHANGING ENVIRONMENT Class 19 (Chp 6) Objectives of Today s Class: The Cryosphere [1] Components, time scales; [2] Seasonal snow

INTRODUCTION TO CO2 CHEMISTRY

ADEOS-II ミッションと海洋学 海洋気象学 (ADEOS-II Mission and Oceanography/Marine Meteorology)

Transcription:

Ocean Carbon & Biogeochemistry Summer workshop 2010 Aragonite undersaturation in the western Arctic Ocean Michiyo Yamamoto-Kawai (Institute of Ocean Sciences, DFO, Canada)

Arctic Ocean FW, OC, Fe, contaminants t etc. Surrounded by continents ~10 % of global river discharge Inflow from both Atlantic and Pacific oceans Outflow to the North Atlantic

Arctic Ocean 50m 500m 2000m

Arctic Ocean land-ocean, Silicate (umol/kg) 100 NP Brg wao Baf Lab excess Phosphate (umol/kg) 0 1 0 2007-2008 NP Brg wao Baf Lab excessp=p-1/16n [Yamamoto-Kawai et al., in prep.] [Yamamoto-Kawai et al., Nature, 2006]

Arctic Ocean---melting Layered structure Pacific-origin inflow Atlantic-origin inflow Reduced sea ice cover in summer From multi-year to first-year ice 1981 2002 September summer sea ice extent & age of ice [Rigor and Wallace, GRL, 2004]

Arctic Ocean---warming [Steele et al., GRL, 2007]

Recent changes in seawater observed in the western Arctic Ocean Aragonite undersaturation: surface & subsurface Surface freshening [Yamamoto-Kawai et al., Science, 2009] [Yamamoto-Kawai et al., JGR, 2009] Acceleration of ice/ocean circulation [Shimada et al., GRL, 2006; Rainville & Woodgate, GRL, 2009] changes in nutrient distribution and in plankton size [McLaughlin & Carmack, subm.; Li et al., Science, 2009]

Aragonite saturation state Corals Pteropods Bivalves Aragonite a form of CaCO 3 that is more soluble than calcite and thus is more sensitive to ocean acidification. Calcite the form of CaCO 3 that is less sensitive to acidification. High-Mg calcite least stable CaCO 3 saturation state of seawater = Ω Decease in Ω --- difficult to maintain CaCO 3 shells Ω < 1 --- risk of dissolution

Aragonite saturation state ppm 850 3.6 750 650 550 450 350 Global mean Atm. pco 2 3.2 28 2.8 2.4 20 2.0 Global mean Ω aragonite Surface water 250 1900 2000 year 2100 1.6 1900 2000 year 2100 [Steinacher et al., Biogeosciences, 2009]

Aragonite saturation state Ωar (surface) Why is surface Ω low in polar regions? [CARINA+GLODAP]

Aragonite saturation state Southern Ocean Cooling --- low T seawater dissolve more CO 2 (high DIC) Upwelling of DIC enriched deep water (high DIC) e.g., Cooling of tropical surface water to -1.8 C S=34.6 T =29 C DIC = 1937 umol/kg Ω = 3.8 Cooling DIC = 2163 umol/kg Ω = 1.3 TA=2265 µmol/kg pco 2 =390 µatm

Aragonite saturation state Southern Ocean Cooling --- low T seawater dissolve more CO 2 (high DIC) Upwelling of DIC enriched deep water (high DIC) Ω aragonite DIC [umol/kg] low Ω = high DIC [CARINA+GLODAP]

Aragonite saturation state Arctic Ocean Cooling Ω DIC Ω aragonite 5 4 3 2 1 0 DIC [umol/kg] low Ω = high DIC [CARINA+GLODAP]

Aragonite saturation state Arctic Ocean Cooling Ω DIC Freshening Ω DIC TA Surface salinity Pacific or Atlantic water: > 2000 umol/kg Arctic River: TA~DIC ~ 1000 umol/kg [PARTNERS 2009] [PHC3.0, Steele et al., J. Climate, 2001]

Aragonite saturation state Arctic Ocean Cooling Freshening Warming Ω DIC Ω DIC TA More freshwater input Low pco 2 Ω DIC P.P Anthropogenic CO 2, Changes in P.P and air- sea gas exchange pco sw 2 [µatm] High primary productivity over shelves Cooling Sea ice cover

Aragonite undersaturation western Arctic Ocean (JOIS) Ω ar 0.5 1 1.5 2 ~1.4 <1.0 1997 2005 2006 2007 2008 Undersaturated! -0.4/10yrs ALOHA -0.08/10yrs Further cooling? Further freshening? Increase in pco 2? Pteropods calcification rate is highly correlated to the aragonite saturation state [Comeau et al., PLosOne, 2010] [Yamamoto-Kawai et al., Science, 2009]

Aragonite undersaturation western Arctic Ocean 0.5 1 1.5 2 Ω ar 1997 2008 SST [C] Further cooling? NO! Further freshening? Increase in pco 2?

Aragonite undersaturation western Arctic Ocean 0.5 1 1.5 2 Ω ar 1997 2008 ~270 µatm ~330 µatm pco sw 2 Further cooling? NO! Further freshening? Increase in pco 2? YES! 150 250 350 450

Aragonite undersaturation western Arctic Ocean pco 2 SW +60 µatm 1997 2008 not enough 1. Anthropogenic CO 2 atm pco 2 increase 1997 2008 15 ppm not likely 2. Decrease in P.P. at the surface P.P. increased due to longer growing season [Arrigo et al., GRL, 2008] mean Chl.a did not change in 0-150 m layer [Li et al., Science, 2009]! 3. Enhanced air-sea gas exchange Less ice cover!

Aragonite undersaturation western Arctic Ocean pco 2 SW +60 µatm 1997 2008 Can this explain the decrease in Ω ar by 0.4 04? -0.2 1997 1997 2008 T, S, TA = constant pco 2 SW +60 µatm + 60 µatm -pco 2 0.5 1 1.5 2 Ω ar

Aragonite undersaturation western Arctic Ocean 0.5 1 1.5 2 Ω ar 1997 2008 SSS Further cooling? NO! Further freshening? YES! Increase in pco 2? YES! river or ice melt? 22 24 26 28 30 32

22 24 26 28 30 32 SSS from H 18 1997 2 O 2008 (freshwater tracer) Sea ice meltwater -0.1 0 0.1 0.2 [ml/ml] Meteoric water (=River water) [Yamamoto-Kawai et al., JGR, 2009+]

Aragonite undersaturation western Arctic Ocean r Ω ar -5 0 5 10 15 Sea ice meltwater (%) [Yamamoto-Kawai et al., Science, 2009]

Aragonite undersaturation western Arctic Ocean +60µatmpCO 2 + 10% sea ice meltwater Can these explain the decrease in Ω ar by 0.4 04? -0.4! 1997 1997 2008 Dilute S &TA with 10% SIM pco 2 =pco 2 1997 +60 µatm + 60 µatm -pco 2 +10% SIM 0.5 1 1.5 2 Ω ar

Aragonite undersaturation western Arctic Ocean melting of sea ice decreased surface Ω in the western Arctic Enhanced air-sea gas exchange Dilution by sea ice melt [Yamamoto-Kawai et al., Science, 2009]

Subsurface Aragonite undersaturation cooling remineralization on shallow shelves Ω ar PWW ATW PWW low T, high nutrients, high DIC low Ω

Subsurface Aragonite undersaturation DIC ant = 40 µmol/kg (0m) ~ 30 µmol/kg (500m) [Tanhua et al., JGR, 2009] DIC bio = ~70 µmol/kg ---from AOU and N* [Sabine et al., GBC, 2002] Ω ar PWW ATW pre-industrial Ω ar

Subsurface Aragonite undersaturation Ω ar 1997 PWW [Jutterström and Anderson, Mar. Chem., 2005] More frequent upwelling of corrosive PWW in recent years [Williams and Yamamoto-Kawai, in prep.]

Subsurface Aragonite undersaturation melting of sea ice enhances upwelling of corrosive subsurface water Ice edge Ice edge [Carmack & Chapman, GRL, 2003]

Upwelling is also enhanced by accelerated motion of upper ocean 1979-1986 sea Ice 1997-2004 motion More mobile ice more upwelling at shelf break [Yang, JGR, 2009] Upwelling (cm/day)

On the shelf Up-welling of subsurface water Ω ar Aragonite undersaturated Negative impacts on Benthos Silicate (umol/kg) Nutrient enriched Positive impacts on P.P.

On the shelf In the Basin Up-welling Down-welling accumulate surface freshwater decrease Ω thicker surface layer increased stratification deeper nutricline

Deepening of nutricline ISUS NO3 sensor Bottle NO3 ~10m [McLaughlin & Carmack, subm.]

Deepening of Chl.a maximum depth 50 m 65 m [McLaughlin & Carmack, subm.]

Melting of more sea ice and/or less ice formation Increased atm-ocean coupling: increased ice drift velocities increased Ekman pumping thicker surface layer increased stratification deeper nutricline nutricline and chlorophyll maximum have deepened.. Light limitation may play a greater role now in P.P. P [McLaughlin & Carmack, subm.]

[Li et al., Science, 2009] Surface S Picophytoplankton p (<2 μm) Nitrate Nanophytoplankton (2-20 μ m) 2004 2008 2004 2008

Summary Ω ar

Summary ice Melting of sea ice Ω ar NP Brg CB Baf Lab Basin Surface freshening Increased pco 2 Aragonite undersaturation in surface water Increased Ekman Pumping Deepening of nutricline Deepening of Chl.a max Silicate (µmol/kg) NP Brg CB Baf Lab Shelf Enhanced Upwelling of corrosive acidified water onto the shelf bottom Supply of nutrients

Concluding remarks Winter observations :Sensor, automatic seawater sampler, AUV Shelf-basin feedback : high PP on shelf high high nutrients/low omega PWW- upwelling onto shelf high PP on shelf Coastal erosion, methane seeps, permafrost thawing Changes are happening right now! & likely continue until multi-year ice disappears (~2030?) : monitoring of the changing Arctic for future prediction/adaptation in the Arctic and other oceans

Many thanks to Fiona McLaughlin (Canada/IOS) Eddy Carmack (Canada/IOS) William Williams (Canada/IOS) Andrey Proshutinsky (US/WHOI) Shigeto Nishino (Japan/JAMSTEC) Takashi Kikuchi (Japan/JAMSTEC) Noriyuki Kurita (Japan/JAMSTEC) Koji Shimada (Japan/TUMST) Members of the IOS & Mirai science teams Captains and crew of the CCGS St-Laurent, Laurier and the R/V Mirai DFO, Cdn IPY Office, NSF, JAMSTEC

Shelf edge & summer sea ice cover

Summer 2005 [Chierici & Fransson, BGD 2009]

Aragonite saturation state western Arctic Ocean +60µatmpCO 2 + 10% sea ice meltwater 1997 + 10%SIM -0.2-0.4 1997 + 60 µatm 1997 + 60 µatm + 10%SIM 1997-0.2 2008 Ω ar

Upwelling-enhanced P.P. lower omega upwelling

Surface tropical seawaters are generally supersaturated with respect to the carbonate minerals (e.g. calcite, aragonite, and high-magnesium calcites) from which marine organisms construct their shells and frameworks. At deeper water depths, seawater becomes undersaturated and these minerals begin to dissolve, imparting an important control (amongst other factors) on the distribution of coral reefs. We refer to the degree to which seawater is saturated with respect to these minerals as 'saturation state' and denote it using the Greek term Ω (omega).

Western Arctic Ocean Pacific Ocean Southern Ocean Atlantic Ocean

Atlantic Ocean Pacific Ocean Southern Ocean Western Arctic Ocean (1997) [CARINA+GLODAP]

Ocean Acidification CO 2 + H 2 O H + + HCO 3 - ph H + + CO 2-3 HCO - 3 CO 2-3 CaCO 3 saturation state Ω = [Ca 2+ ] sw [CO 2-3 ] sw [Ca 2+ ] sat [CO 2-3 ] sat =Ksp* ppm 850 3.6 750 650 ΩpH 8.15 3.2 805 8.05 2.8 550 450 7.95 2.4 350 pco 2 2.0 7.85 250 1900 2000 1.6 7.75 2100 year [Steinacher et al., Biogeosciences, 2009]

[CARINA+GLODAP]

Clams (Mercenaria mercenaria) Arg>>HMgC memo aragonite (corals, mussels) high-magnesium calcite (sea urchins) pco2 sensor---u of Montana Mike DeGrandpre Pacific inflow の水温 塩分の経年変化は? 底層の ph が下がると リンが溶出しやすくなる? 脱窒が変化しないなら 大西洋への P の供給が増える 海洋への窒素供給が増える CO2 が下がる? 負のフィードバック CARINA (CARbon dioxide IN the Atlantic Ocean) Polar science center Hydrographic Climatology (PHC) Omega 計算のパラメータ選択 &ODV のパラメータをメモすること! High-Mg calcite について勉強北極では?

Bering shelf のココリスブルームは 97 98 00 に大きくて あとは小さい Murata 2006 によると Calcification-photosynthesis で 正味 18 µatm 程度の pco2 引き下げ 2007 の Bering inflow は水温高い &Flux 多い Wind, Pacific-Arctic pressure head [Woodgate et al., 2010] 2004 年以前と以降では以降の方が熱 Flux 多い (Volume&temperature) [Mizobata et al., 2010] Southern CB, surface T was also high in 2008 but low in 2009 (but 1 month later) Li のデータは何メーターのもの?150m 以浅と 150m 以深 種類はどう変わったの? 減ったナノは珪藻? 増えたのは? Arctic deep water residence time ~400 yrs 炭酸カルシウムは塩分高い方が溶けやすい

Pre-industrial 2005 2050 [Anderson et al., DSR, 2010]

Ω ar 0.5 1 1.5 2 1997 2005 2006 2007 2008 ph 7.9 8.0 8.1 8.2 8.3 Temperature [C] [Yamamoto-Kawai et al., 2009b+]

sea surface salinity 22 24 26 28 30 32 150 250 350 450 ~270 ~330 pco2 [Yamamoto-Kawai et al., 2009b+]

Alkalinity

Sea ice meltwater [ml/ml] -0.1 0 0.1 0.2 Meteoric (River) water [ml/ml] [Yamamoto-Kawai et al., 2009a+]

Sea Surface Alkalinity [umol/kg] Sea Surface DIC [umol/kg] [CARINA+GLODAP]

2003-2005