MULTISCALE THERMAL MODELS OF NANOSTRUCTURED DEVICES. Giuseppe Romano

Similar documents
Multiscale-Multiphysics modeling of nanostructured devices: The TiberCAD project.

The gdftb tool for quantum transport calculations. Alessandro Pecchia CNR - ISMN. University of Roma Tor Vergata

CURRICULUM VITAE OF ALESSANDRO PECCHIA

Electro-Thermal Transport in Silicon and Carbon Nanotube Devices E. Pop, D. Mann, J. Rowlette, K. Goodson and H. Dai

NANO/MICROSCALE HEAT TRANSFER

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

GeSi Quantum Dot Superlattices

Daniele Barettin. Classical high school Diploma at Liceo Classico Socrate, Rome, Italy. Maximum grade: 60 / 60

Nanoscale Heat Transfer and Information Technology

Equilibrium Piezoelectric Potential Distribution in a Deformed ZnO Nanowire

Progress Report to AOARD

ME 4875/MTE C16. Introduction to Nanomaterials and Nanotechnology. Lecture 2 - Applications of Nanomaterials + Projects

CURRICULUM VITAE HUAMIN LI UPDATED: DECEMBER 1, 2015 MAIN RESEARCH INTERESTS EDUCATION

Intraband emission of GaN quantum dots at λ =1.5 μm via resonant Raman scattering

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

2. TranSIESTA 1. SIESTA. DFT In a Nutshell. Introduction to SIESTA. Boundary Conditions: Open systems. Greens functions and charge density

Heat/phonons Transport in Nanostructures and Phononics

Nanotechnology, the Technology of Small Thermodynamic Systems 1

Nanomaterials and their Optical Applications

Achieving a higher performance in bilayer graphene FET Strain Engineering

Impact Factor Journals of Physics

IH2654 Nanoelectronics, 9hp autumn 2012, period 1 and ****** Nanoelectronics, PhD course

3-month progress Report

Lecture #2 Nanoultrasonic imaging

Basic Semiconductor Physics

Solar Thermoelectric Energy Conversion

Graphene Canada Montreal Oct. 16, 2015 (International Year of Light)

PTES2016 Program for Conference (Venue: Nan Yang Hotel)

How a single defect can affect silicon nano-devices. Ted Thorbeck

Device and Monte Carlo Simulation of GaN material and devices. Presenter: Ziyang Xiao Advisor: Prof. Neil Goldsman University of Maryland

Acoustic metamaterials in nanoscale

eterostrueture Integrated Thermionic Refrigeration

The Physics of Nanoelectronics

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Spectroscopy at nanometer scale

Nanophononics. Zlatan Aksamija. Thermal Generation, Transport, and Conversion at the Nanoscale. edited by

Title: Ultrafast photocurrent measurement of the escape time of electrons and holes from

Semiconductor Physical Electronics

GAMINGRE 8/1/ of 7

Neutron and x-ray spectroscopy

Seminars in Nanosystems - I

Center for Integrated Nanotechnologies (CINT) Bob Hwang Co-Director, Sandia National Laboratories

Импакт-факторы зарубежных научных журналов по физике

Project Periodic Report

Other SPM Techniques. Scanning Probe Microscopy HT10

Self-assembled SiGe single hole transistors

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Supplementary Information: The origin of high thermal conductivity and ultra-low thermal expansion in copper-graphite composites

Special Topics in Semiconductor Nanotechnology ECE 598XL

Cooling dynamics of glass-embedded metal nanoparticles

Variation of Electronic State of CUBOID Quantum Dot with Size

GaN-based Devices: Physics and Simulation

Spectroscopy at nanometer scale

GaN and GaN/AlGaN Heterostructure Properties Investigation and Simulations. Ziyang (Christian) Xiao Neil Goldsman University of Maryland

Spectroscopic Study of FTO/CdSe (MPA)/ZnO Artificial Atoms Emitting White Color

Lecture 35: Introduction to Quantum Transport in Devices

Contents. Preface to the first edition

Electrical and Optical Properties. H.Hofmann

graphene nano-optoelectronics Frank Koppens ICFO, The institute of photonic sciences, Barcelona

RAJASTHAN TECHNICAL UNIVERSITY, KOTA

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

Interaction between Single-walled Carbon Nanotubes and Water Molecules

6.730 Physics for Solid State Applications

Nanoscience, MCC026 2nd quarter, fall Quantum Transport, Lecture 1/2. Tomas Löfwander Applied Quantum Physics Lab

Current-Driven Phenomena in NANOELECTRONICS. Edited by Tamar Seideman Northwestern University

AKIN AKTURK Carlsbad Drive Gaithersburg, MD 20879, USA

Olivier Bourgeois Institut Néel

Report on 7th US-Japan Joint Seminar on Nanoscale Transport Phenomena Science and Engineering

Nanoelectronics. Topics

Thermoelectricity: From Atoms to Systems

QUANTUM SIMULATION OF NANOCRYSTALLINE COMPOSITE THERMOELECTRIC PROPERTIES

Molecular Dynamics Study of Thermal Rectification in Graphene Nanoribbons

5.74 Introductory Quantum Mechanics II

SCORM Based Nano Scale Electronic Devices Modeling Methodology

Carbon Nanocone: A Promising Thermal Rectifier

Analysis of flip flop design using nanoelectronic single electron transistor

Chapter 3 Properties of Nanostructures

Physics and Material Science of Semiconductor Nanostructures


Dottoressa Maria Grazia Carrara. Curriculum Vitae

MCC026:Nanoscience. at the border between chemistry and physics. Samuel Lara-Avila

Büttiker s probe in molecular electronics: Applications to charge and heat transport

chiral m = n Armchair m = 0 or n = 0 Zigzag m n Chiral Three major categories of nanotube structures can be identified based on the values of m and n

Nanoscience galore: hybrid and nanoscale photonics

SYLLABUS FINDING NANO Syllabus NanoSCI DISCOVERING NANOTECHNOLOGY AND CULTURE IN GERMANY

Carrier Loss Analysis for Ultraviolet Light-Emitting Diodes

Computational Study of the Electronic Performance of Cross-Plane Superlattice Peltier Devices

Understanding Nanoplasmonics. Greg Sun University of Massachusetts Boston

Trench IGBT failure mechanisms evolution with temperature and gate resistance under various short-circuit conditions

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Quantum Mechanical Modeling of Electron-Photon Interactions in Nanoscale Devices

Vibrational modes of silicon metalattices from atomistic and finite-element calculations

Structure and Dynamics : An Atomic View of Materials

Supporting Information

Challenges for Materials to Support Emerging Research Devices

Recap (so far) Low-Dimensional & Boundary Effects

Curriculum Vitae M. J. Iqbal Version 14 Sep 2018

Curriculum Vitae - Ramoona Shehzadi

Advanced Workshop on Energy Transport in Low-Dimensional Systems: Achievements and Mysteries October 2012

Transcription:

MULTISCALE THERMAL MODELS OF NANOSTRUCTURED DEVICES Giuseppe Romano PhD dissertation XXII CICLO TUTOR: Prof. Aldo Di Carlo COORDINATOR: Prof. Giuseppe Bianchi

INTRODUCTION Goodson et al. IEEE Elect. Lett. (2008)

INTRODUCTION Quantum DOTs based MESA Muller et al. APL (2006) Carbon nanotube based transistor Infineon

OUTLINE Introduction Heat transfer at the nano scale Heat transfer at the meso scale Heat transfer at the macro scale Multiscale model Conclusion

Scales Phonon wavelength λ 10nm P D Nanoscale? L P E?

Heat balance at the nanoscale Dubi. RMP (2010) The internal energy is stored and dissipated by phonons The vibration is splitted in 3N-6 normal modes (-labeled).

Heating at the nanoscale VL VR µ L Absorption Emission µ R [ A. Pecchia et al. Report on Progress in Physics (2004) ]

Cross sections Phonon-phonon interaction [G. Romano, A. Pecchia and A. Di Carlo J. of Physics: cond. matt. (2007)] P P D E α α = ω Λ N n ) α ( [ E ( N + 1 A N ] = ω ) N Tmol Electron-phonon interaction [A. Pecchia, G. Romano and Aldo Di Carlo Physical Review B (2007)] Transport model Ground state Electron-phonon interaction Non euilibrium Green s Function (NEGF) Density Functional Theory (DFT) Born Approximation (BA)

Resonance effect? The absorption can prevail over the emission and cools the molecule [G. Romano, A. Gagliardi, A. Pecchia and Aldo Di Carlo et al. Physical Review B (2010)]

Collaboration with experimentalists Thermal instability of fullerenes [G. Schulze, K. Franke, A. Gagliardi, G. Romano, C. Lin, A. Rosa, T. A. Niehaus, T. Frauenheim, A. Di Carlo, A. Pecchia and J. Pascual. Physical Review Letters (2009)]

Scales Phonon wavelength λ 10nm Phonon mean free path Λ 100nm Nanoscale Mesoscale P D α Λ α ( N n α )? L P E E ( N + 1) A N?

Heat balance at the mesoscale: the gray model Euilibrium energy Thermal flux Temperature 0 e e ~ v ( se ) g = + H τ All phonons are assumed to have the same group velocity (sound velocity) Relaxation time is indipendent of energy phonons. Discontinuous Galerkin Method e T 0 J = = = T 1 4 4π 0 π 4π sv g 4πe + C e dω e dω 0 [Sreekant et al. Heat and Mass Transfer (2006)]

Euilibrium energy Since the euilibrium energy depends on the solution itself a self consistent loop is reuired. The first guess of the euilibium energy is a key point for the convergence speed. Usual choice: constant value This work: Fourier simulation 1000 steps 10 steps This approach speeds the convergence up to 100 times

GaN uantum dot 10 19 p-doped Al 0.25 GaN Al 0.25 GaN buffer GaN 10 19 n-doped Al 0.25 GaN Length = 120 nm

GaN uantum dot: meso results Temperature H ~ Current E pz Strain

GaN uantum dot: meso results The solid angle is discretized in 18 slices T B M 358K

Scales Phonon wavelenght λ 10nm Phonon mean free path Λ 100nm Nanoscale Mesoscale Macroscale P D α Λ α ( N n α ) 4π ( ' s) v g e' dω? L P E E ( N + 1) A N 4π ~ H ( Ω) dω?

Thermal transport at the macroscales Irreversible thermodynamics Onsager reciprocity relationships Local thermal euilibrium Standard Galerkin Method κ ( T ) = H H H n p = = J n σ J σ 2 n 2 p p T F M 319K H rec = e( φ φ )R n p

Scales Phonon wavelenght λ 10nm Phonon mean free path Λ 100nm Nanoscale Mesoscale Macroscale P D α Λ α ( N n α ) 4π ( ' s) v g e' dω κ ( T ) L P E E ( N + 1) A N 4π ~ H ( Ω) dω H

THE METHOD Fourier T J m M Gray T Fourier

Domain partitioning MACRO DOMAIN MESO DOMAIN MACRO DOMAIN

Multiscale model: results Kapitza resistance G. Romano, A. Pecchia and A. Di Carlo. IEEE Journal of Quantum Electronics (in preparation)

TiberCAD The models have been implemented in TiberCAD, a multiscale simulator of optoelectronic devices. Input TiberCORE Database Modules Models www.tibercad.org

Conclusion Developed and implemented a model for heating and heat dissipation at the nanoscale (NEGF-DFT) Implemented and optimized a Boltzmann based model for electromodel simulation (Discontinuous Galerkin Method) Implemented the Fourier s law for heat transport (Standard Galerkin Method) Developed and implemented the Macro/Meso multiscale model. Application of the implemented models to several systems, ranging from molecular structures to macro devices.

Future work Phonon wavelenght λ 10nm Phonon mean free path Λ 100nm Nanoscale Mesoscale Macroscale P D α Λ α ( N n α ) 4π ( ' s) v g e' dω κ ( T ) L P E E ( N + 1) A N 4π ~ H ( Ω) dω H

Full integration Mesoscale Nanoscale Macroscale

Visiting scholarships 08/2009-10/2009 Georgia Institute of Technology, Atlanta, GA (USA) Supervisor: Prof. Zhong Lin Wang Activities: - FEM simulation of piezoelectric nanogenerators and nanopiezotronic devices. - Investigation on energy harvesting for nanoelectronics - Collaboration with experimentalists. 08/2008-10/2008 Kyoto Institute of Technology, Kyoto (JAPAN). Supervisor: Prof. Giuseppe Pezzotti Activities: - FEM simulation of Raman shift induced by the internal stress. - Investigation on phonon deformation potentials. - Collaboration with experimentalists.

DIDACTIC ACTIVITIES GE2008: Nanophotonics and Nanoelectronics: technologies, devices and applications. 18-20 June, 2008. Otranto (Italy). International Summer School on Advanced Microelectronics. MIGAS 2007. Grenoble (France), 2007. Metodi e modelli per la matematica applicata. Prof. Vieri Mastropietro. June-july 2007. Dispositivi Elettronici. Prof. Arnaldo D amico, 2007. Scuola di Dottorato. Nanoelectronic Modeling: electronic structure and transport at the nanoscale. Prof. Gerhard Klimeck. 5-9 October, 2009

PRESENTATIONS G. Romano, G. Mantini, A. Di Carlo, A. D Amico, C. Falconi and Z. L. Wang. Simulation of piezoelectric nanogenerators with TiberCAD. AISEM 2010, Messina (Italy), 8 10, Feb 2010 (Poster). G. Romano, G. Penazzi and A. Di Carlo. Multiscale thermal modeling of GaN/AlGaN uantum DOT LEDs. SPIE Photonics West, San Francisco, CA (USA), 23 28, Jan 2010 (Oral). F. Sacconi, G. Romano, G. Penazzi, M. Povolotskyi, M. Auf der Maur, A. Pecchia and A. Di Carlo. Electronic and transport properties of GaN/ALGaN uantum dot based p-i-n diodes. SISPAD 2008, Hakone (Japan), 9 11, Sep 2008 (Poster). G. Romano, G. Penazzi, M. Auf der Maur, F. Sacconi, M. Povolotskyi, A. Pecchia and A. Di Carlo. TiberCAD: the new multiscale simulator for electronic and optoelectronic devices. 40th Electronic Group Meeting, Otranto (Italy), 16 18, Jun 2008 (Oral). G. Romano, G. Penazzi, M. Auf der Maur, F. Sacconi, M. Povolotskyi, A. Pecchia and A. Di Carlo. A new Multiscale simulator for electronics and optoelectronics devices. New frontiers in micro and nanophotonics, Florence (Italy), 23 26, April 2008 (Oral). G. Romano, M. Auf der Maur, M. Povolotskyi, F. Sacconi, E. Petrolati, A. Pecchia and A. Di Carlo. Multiscale approach in the heat balance problems. International summer school on advanced microelectronics, Grenoble (France), 24 29, Jun 2007 (Poster).

PROCEEDINGS G. Romano, G. Penazzi and A. D. Carlo. Multiscale thermal modeling of GaN/AlGaN uantum dot LEDs. Physics and Simulation of Optoelectronic Devices XVIII, 7597(1), 75971S, SPIE (2010). G. Penazzi, A. Pecchia, F. Sacconi, M. Auf der Maur, M. Povolotskyi, G. Romano and A. Di Carlo. Simulations of Optical Properties of a GaN Quantum Dot Embedded in a AlGaN Nanocolumn within a Mixed FEM/atomistic Method. 13th International Workshop on Computational Electronics (IWCE 09), 1 4 (2009). M. Auf der Maur, F. Sacconi, G. Penazzi, M. Povolotskyi, G. Romano, A. Pecchia and A. Di Carlo. Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. 9th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), 75 80 (2009). A. Di Carlo, M. Auf der Maur, F. Sacconi, A. Pecchia, M. Povolotskyi, G. Penazzi and G. Romano. Multiscale atomistic simulations of high-k MOSFETs. Proceedings of the 8 th IEEE International Conference on Nanotechnology (2008). A. Pecchia, G. Romano and A. Di Carlo. Modeling of dissipative transport in molecular systems. Proceedings of the 7th IEEE International Conference on Nanotechnology, 1185 1192 (2008). F. Sacconi, G. Romano, G. Penazzi, M. Povolotskyi, M. Auf der Maur, A. Pecchia and A. Di Carlo. Electronic and transport properties of GaN/AlGaN uantum dot-based p-in diodes. (SISPAD 2008), 177 180 (sept. 2008). M. Auf der Maur, M. Povolotskyi, F. Sacconi, G. Romano, P. E. and A. Di Carlo. Multiscale Simulation of Electronic and Optoelectronic Devices with TiberCAD. SISPAD 2007, 245 248 (sept. 2007).

JOURNAL ARTICLES (1/2) G. Romano, A. Pecchia and A. Di Carlo. Multiscale electro-thermal modeling og GaN/AlGaN uantum dot LEDs. IEEE Journal of uantum electronics, (in preparation). A. Gagliardi, G. Romano, A. Pecchia and A. Di Carlo. Simulation of Inelastic Scattering in Molecular Junctions: Application to Inelastic Electron Tunneling Spectroscopy and Dissipation Effects. Journal of Computational and Theoretical Nanoscience (in press). M. Auf der Maur, F. Sacconi, G. Penazzi, M. Povolotskyi, G. Romano, A. Pecchia and A. Di Carlo. Coupling atomistic and finite element approaches for the simulation of optoelectronic devices. Optical and Quantum Electronics (in press). G. Romano, A. Gagliardi, A. Pecchia and A. Di Carlo. Heating and cooling mechanisms in single-molecule junctions. Physical Review B, 81(11), 115438 (2010). A. Gagliardi, G. Romano, A. Pecchia, A. Di Carlo, T. FrauenheElectron-phonon scattering in molecular electronics: From inelastic electron tunnelling spectroscopy to heating effects. im and T. A. Niehaus. New Journal of Physics, 10 (2008). G. Schulze, K. Franke, A. Gagliardi, G. Romano, C. Lin, A. Rosa, T. A. Niehaus, T. Frauenheim, A. Di Carlo, A. Pecchia and J. Pascual. Resonant electron heating and molecular phonon cooling in single C60 junctions. Physical Review Letters, 100(13) (2008).

JOURNAL ARTICLES (2/2) A. Pecchia, G. Romano, A. Di Carlo, A. Gagliardi and T. Frauenheim. Joule heating in molecular tunnel junctions: Application to C60. Journal of Computational Electronics, 7(3), 384 389 (2008). M. Auf Der Maur, M. Povolotskyi, F. Sacconi, A. Pecchia, G. Romano, G. Penazzi and A. Di Carlo. TiberCAD: Towards multiscale simulation of optoelectronic devices. Optical and Quantum Electronics, 40(14-15 SPEC. ISS.), 1077 1083 (2008). G. Romano, A. Pecchia and A. Di Carlo. Coupling of molecular vibrons with contact phonon reservoirs. Journal of Physics Condensed Matter, 19(21) (2007). A. Pecchia, G. Romano and A. Di Carlo. Theory of heat dissipation in molecular electronics. Physical Review B, 75(3), 35401 1 (2007). A. Pecchia, G. Romano, A. Gagliardi, T. Frauenheim and A. Di Carlo. Heat dissipation and non-euilibrium phonon distributions in molecular devices. Journal of Computational Electronics, 6(1-3), 335 339 (2007).

Kyoto Institute of Technology, Kyoto (Japan) Aug-Oct 2008 Theoretical piezospectroscopic Deformation potentials Raman shift Prof. Giuseppe Pezzotti

Georgia Institute of Technolgy, Atlanta, GA (Aug-Oct 2009) Prof. Zhong Lin Wang