Vector Supplement Part 1: Vectors

Similar documents
1 Vectors. c Kun Wang. Math 151, Fall Vector Supplement

1.1 Vectors. The length of the vector AB from A(x1,y 1 ) to B(x 2,y 2 ) is

SUPPLEMENT I. Example. Graph the vector 4, 3. Definition. Given two points A(x 1, y 1 ) and B(x 2, y 2 ), the vector represented by # AB is # AB =,

MATH 151 Engineering Mathematics I

Appendix D: Algebra and Trig Review

10.1 Vectors. c Kun Wang. Math 150, Fall 2017

BC VECTOR PROBLEMS. 13. Find the area of the parallelogram having AB and AC as adjacent sides: A(2,1,3), B(1,4,2), C( 3,2,7) 14.

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

There are two types of multiplication that can be done with vectors: = +.

Unit #17: Spring Trig Unit. A. First Quadrant Notice how the x-values decrease by while the y-values increase by that same amount.

11.4 Dot Product Contemporary Calculus 1

Exam 1 Review SOLUTIONS

Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems. Three-Dimensional Coordinate Systems

VECTORS AND THE GEOMETRY OF SPACE

Vectors are used to represent quantities such as force and velocity which have both. and. The magnitude of a vector corresponds to its.

Vectors. Examples of vectors include: displacement, velocity, acceleration, and force. Examples of scalars include: distance, speed, time, and volume.

OpenStax-CNX module: m Vectors. OpenStax College. Abstract

Monday Tuesday Block Friday 13 22/ End of 9-wks Pep-Rally Operations Vectors Two Vectors

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

MATH 151, SPRING 2018

MATH 151, SPRING 2018

Introduction. Law of Sines. Introduction. Introduction. Example 2. Example 1 11/18/2014. Precalculus 6.1

Math 370 Exam 3 Review Name

u + v = u - v =, where c Directed Quantities: Quantities such as velocity and acceleration (quantities that involve magnitude as well as direction)

9.4 Polar Coordinates

DATE: MATH ANALYSIS 2 CHAPTER 12: VECTORS & DETERMINANTS

Department of Mathematical and Statistical Sciences University of Alberta

MATH 1020 WORKSHEET 12.1 & 12.2 Vectors in the Plane

SB Ch 6 May 15, 2014

Math 151, Fall 2018 Common Exam 1 Version A

5. A triangle has sides represented by the vectors (1, 2) and (5, 6). Determine the vector representing the third side.

BELLWORK feet

PreCalculus Second Semester Review Chapters P-3(1st Semester)

Chapter 1E - Complex Numbers

10.2,3,4. Vectors in 3D, Dot products and Cross Products

Chapter 8: Polar Coordinates and Vectors

Student Content Brief Advanced Level

Pre-Calculus Vectors

1. Find the Dot Product of Two Vectors 2. Find the Angle Between Two Vectors

6.4 Vectors and Dot Products

Math 370 Exam 3 Review Name

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers. A: Initial Point (start); B: Terminal Point (end) : ( ) ( )

Vectors and the Geometry of Space

LB 220 Homework 1 (due Monday, 01/14/13)

1.1 Single Variable Calculus versus Multivariable Calculus Rectangular Coordinate Systems... 4

College Trigonometry

Definitions In physics we have two types of measurable quantities: vectors and scalars.

12.1 Three Dimensional Coordinate Systems (Review) Equation of a sphere

Chapter 13: Vectors and the Geometry of Space

Chapter 13: Vectors and the Geometry of Space

Study guide for Exam 1. by William H. Meeks III October 26, 2012

8.1 Solutions to Exercises

11.1 Three-Dimensional Coordinate System

Chapter 7.4: Vectors

MATH 255 Applied Honors Calculus III Winter Midterm 1 Review Solutions

Math The Dot Product

Precalculus Notes: Unit 6 Vectors, Parametrics, Polars, & Complex Numbers

TAMU Spring Math 151, Spring 2019 Common Exam 1 Version A

Review of Coordinate Systems

Teacher Content Brief

Congruence Axioms. Data Required for Solving Oblique Triangles

9.1 VECTORS. A Geometric View of Vectors LEARNING OBJECTIVES. = a, b

3 = arccos. A a and b are parallel, B a and b are perpendicular, C a and b are normalized, or D this is always true.

Name: Date: Practice Midterm Exam Sections 1.2, 1.3, , ,

OHSx XM521 Multivariable Differential Calculus: Homework Solutions 13.1

Multivariable Calculus: Chapter 13: Topic Guide and Formulas (pgs ) * line segment notation above a variable indicates vector

PreCalculus Second Semester Review Ch. P to Ch. 3 (1st Semester) ~ No Calculator

CALCULUS 3 February 6, st TEST

Calculus III. Exam 2

Culminating Review for Vectors

Applications of Trigonometry and Vectors. Copyright 2017, 2013, 2009 Pearson Education, Inc.

Arnie Pizer Rochester Problem Library Fall 2005 WeBWorK assignment Vectors0Introduction due 01/03/2008 at 02:00am EST.

New concepts: scalars, vectors, unit vectors, vector components, vector equations, scalar product. reading assignment read chap 3

Math 3c Solutions: Exam 1 Fall Graph by eliiminating the parameter; be sure to write the equation you get when you eliminate the parameter.

Math 1316 Exam 3. if u = 4, c. ÄuÄ = isin π Ë 5 34, , 5 34, 3

Student Exploration: Vectors

Accelerated Precalculus (Shildneck) Spring Final Exam Topic List

LB 220 Homework 2 (due Tuesday, 01/22/13)

The polar coordinates of a point are given. Find the rectangular coordinates of the point. 1) 7, 2 3 D) - 7 2, A) - 7 2, 7 3

Quiz 2 Practice Problems

Section 10.4 Vectors

12. Lines in R 3. through P 0 and is parallel to v is written parametrically as a function of t: Using vector notation, the same line is written

Test # 3 Review Math Name (6.5 to 6.7, 10.1 to 10.3,and 10.5)

6.3 Vectors in a Plane

Vectors in the Plane

1 Geometry of R Conic Sections Parametric Equations More Parametric Equations Polar Coordinates...

Chapter 6 Additional Topics in Trigonometry

Section 14.1 Vector Functions and Space Curves

Exercises for Multivariable Differential Calculus XM521

Bonus Section II: Solving Trigonometric Equations

Unit 11: Vectors in the Plane

Trigonometry Test 3 Practice Chapters 5 and 6 NON-CALCULATOR PORTION

12.1. Cartesian Space

Math 32A Discussion Session Week 2 Notes October 10 and 12, 2017

1 Vector Geometry in Two and Three Dimensions

Mathematical review trigonometry vectors Motion in one dimension

Name: Date: Period: Calculus Honors: 4-2 The Product Rule

(arrows denote positive direction)

8-3 Dot Products and Vector Projections

Course Notes Math 275 Boise State University. Shari Ultman

Transcription:

Vector Supplement Part 1: Vectors A vector is a quantity that has both magnitude and direction. Vectors are drawn as directed line segments and are denoted by boldface letters a or by a. The magnitude of a vector a is its length, denoted a. In practice, a two-dimensional vector is an ordered pair a = a 1, a 2 of real numbers. The numbers a 1 and a 2 are called the components of a. Two vectors are equal if they have the same magnitude and direction. So, it doesn t matter where the vector is as long as it has the same magnitude and direction (the same displacement). A vector a 1, a 2 with initial point at the origin is called the position vector of the point (a 1, a 2 ). A vector with initial point at the origin is said to be in standard position. Magnitude: The magnitude (or length) of a vector a=< a 1, a 2 > is a = (a 1 ) 2 + (a 2 ) 2 Given the points A(x 1, y 1 ) and B(x 2, y 2 ), the vector a with initial point A and terminal point B (also written AB) is a = x 2 x 1, y 2 y 1 The length of the vector AB from A(x1, y 1 ) to B(x 2, y 2 ) is Example: Given the points A( 2, 5) and B(4, 1), find the vector AB and its magnitude. 1

The zero vector, 0, is the vector 0, 0. It has magnitude 0 and no direction. Vector Addition: If a = a 1, a 2 and b = b 1, b 2, then the vector a + b is a 1 + b 1, a 2 + b 2 Scalar Multiplication: Multiplying a vector by a scalar (number) changes the magnitude of the vector by this factor. A negative scalar changes the magnitude and also reverses the direction. If c is a scalar and a = a 1, a 2, then the vector ca = ca 1, ca 2. Two vectors a and b are parallel if b = ca for some scalar c. Vector Difference: If a = a 1, a 2 and b = b 1, b 2, then the vector a b is a 1 b 1, a 2 b 2 Example: If a = 3, 4 and b = 1, 2, find 2a b. 2

Unit Vector: A vector with length (magnitude) 1 is called a unit vector. A unit vector in the direction of a is: Example: If a = 2, 3, find a unit vector in the direction of a. Example: Find a vector of length 5 in the same direction as a. Basis Vectors: There are two special unit vectors that we use all the time: i = 1, 0 j = 0, 1 i is the unit vector in the positive horizontal (x) direction, and j is the unit vector in the positive vertical (y) direction. The vectors i and j are called basis vectors because EVERY vector a= a 1, a 2 can be written in terms of these unit vectors by a = a 1 i + a 2 j Two vectors are parallel if they are scalar multiples of each other. Are the vectors a = 3i 5j and b = 6i + 10j parallel? 3

Direction: The direction of a vector is the positive angle θ formed by the positive x-axis and the vector. Suppose you are given a vector a with magnitude a and direction θ. Then a = a cos θ, a sin θ Example: A vector a has length 4 and makes an angle of 60 with the positive x-axis. Write a in component form. Example: Find the vector a where a = 10 and a makes an angle of 300 with the positive x-axis. Example: Find the direction of the vector a = 4i 5j from the positive x-axis. Applications The velocity of an object can be modeled by a vector, where the direction of the vector is the direction of motion, and the magnitude of the vector is the speed. Often when dealing with boats or planes, directions are expressed as bearings: 4

Example: A person is swimming due north at 5 mi/h relative to the water. The water is flowing due west at 2 mi/h. Find the true course and speed of the person. Example: A jet is flying through a wind that is blowing with a speed of 40 mph in the direction N 30 W. The jet has an airspeed (speed in still air) of 760 mph, and the pilot heads the jet in the direction N 45 E. Find the ground speed and true course of the jet (as a bearing). 5

Another application of vectors involves forces. A force has magnitude (measured in pounds or Newtons) and a direction. If several forces are acting on an object, the resultant force is the vector sum of all these forces. Example: Two forces F 1 and F 2 are acting on an object at a point P. F 1 has a magnitude of 40 lbs in a direction of 60 from the positive x-axis. F 2 has a magnitude of 20 lbs in a direction of 330 from the positive x-axis. Find the resultant force F along with both its magnitude and direction. 6

Vector Supplement Part 2: The Dot Product The dot product of two nonzero vectors a and b, denoted a b, is the number a b = a b cos θ where θ is the angle between a and b, 0 θ π. If either vector is the vector 0, then the dot product is 0. If the vectors are given in component form where a = a 1, a 2 and b = b 1, b 2, then a b = a 1 b 1 + a 2 b 2 Important: The dot product of two vectors is always a SCALAR, not a vector. For this reason, the dot product is sometimes called the scalar product. Example: Calculate a b in the following scenarios. (a) a = 4, 7, b = 3, 2 (b) a = 7, b = 2, and the angle between the two vectors is π 6 3 cases: Two vectors are orthogonal or perpendicular if if the angle between them is π 2 or 90. Thus, two vectors are orthogonal if and only if a b = 0, since cos ( π 2 ) = 0. Example: Find the value(s) of x such that the vectors a = 2x 2, 1 and b = 2i 6xj are orthogonal. 7

Orthogonal Complement: Sometimes it is useful to find a vector that is orthogonal to a given vector with the same length. Given the nonzero vector a = a 1, a 2, the orthogonal complement of a is the vector a = a 2, a 1 Note that a 2, a 1 is another vector that is orthogonal to a, but it doesn t have a special name. Example: Find the orthogonal complement of the vector a = 10i + 6j. Example: Find a vector of length 2 that is orthogonal to < 2, 8 >. The dot product can also be used to find the angle between two vectors when they are given in component form. Since a b = a b cos θ, then cos θ = a b a b ( ) a b θ = arccos a b Example: Find the angle between the vectors a = 1, 4 and b = 2, 5. Example: Given a triangle with vertices A(1, 5), B(2, 1), and C(4, 6), find BCA. 8

Work: Work is an application of the dot product to physics. The work done in moving an object through a distance d by a force F is W = F d. However, this formula only works if the force is applied in the same direction as the motion. We now generalize to the case where the force may not be applied in the same direction by using vectors. Suppose a force F moves an object from a point P to a point Q. The displacement vector is D = P Q. How much work is done? W = F D = F D cos θ If the force is measured in Newtons and the displacement is measured in meters, then the unit of work is N m, which is also call a joule (J). If the force is measured in pounds and the displacement is measured in feet, then the unit of work is the ft lb. Example: A force F = 4i + 2j moves an object from the point P (3, 6) to the point Q(2, 9). How much work is done if force is measured in lbs and distance is measured in ft? Example: A horizontal force of 30 N is used to push a box up a 20 m ramp which is inclined at an angle of 15. How much work is done? Example: If the box is pulled up this same ramp at an angle of 70 to the ramp, how much work is done? 9

Projections: Scalar Projection of b onto a (also called the Component of b along a): compab = a b a ( ) a b a Vector Projection of b onto a: projab = a a = a b a 2 a Example: Find the scalar and vector projections of the vector 3, 1 onto the vector 2, 5. 10

Example: Find the distance from the point (3, 6) to the line y = 1 2 x + 1. 11

Vector Supplement Part 3: Parametric Equations and Vector Functions Parametric Curves: Sometimes, instead of representing a curve using just x and y, it is more convenient to use parametric equations using a parameter such as t. This means that the values of x and y are defined as functions of this parameter, x(t) and y(t). Example: Sketch the curve represented by the parametric equations x = 3t + 1, y = 2t 1. If given a set of parametric equations, it may be useful to convert back into a Cartesian equation (using x and y only). In order to do this, you must eliminate the parameter. How? 1. If possible, solve one of the parametric equations for t and use substitution. 2. If the parametric equations involve trig functions, use a trig identity, often sin 2 θ + cos 2 θ = 1. Example: Eliminate the parameter from the previous example and write a Cartesian equation for the curve. Sometimes, there may be a restriction on the values of t or the values of x and y may have bounds you need to watch out for. Exampl2e: Eliminate the parameter to find a Cartesian equation for the following curves, sketch a graph, and denote the direction of motion as t increases. (a) x = t + 1, y = t 3, 2 t 4 12

(b) x = t, y = 2 t (c) x = 3 + sin θ, y = 2 + cos θ (d) x = cos t, y = sec t, 0 t π 3 13

Vector Functions: We can define vector functions using these parametric equations by r(t) = x(t), y(t). It is called a vector function because it takes values of t and produces vectors. These vectors are tracing out the curve. Example: Sketch the curve represented by the vector function r(t) = (4 cos t)i + (sin t)j, 0 t π. Example: The position of an object after t seconds, t 0, is given by the vector function r(t) = t 2, t 2. What is the position of the object at time t = 6? At what time, if ever, is the object at position (9, 1)? Does the object pass through the point (49, 7)? Find an equation in x and y whose graph is the path of the object and sketch its path. 14

Vector Equation of a Line: If P 0 (x 0, y 0 ) is a point on the line with position vector r 0 and v is a vector parallel to a line, then the vector equation of the line is r(t) = r 0 + tv. Parametric equations of the line that passes through the point P (x 0, y 0 ) and is parallel to the vector a, b are given by x = x 0 + at y = y 0 + bt Example: Find a vector equation and parametric equations for the line that passes through the points (2, 5) and ( 1, 7). Example: Find parametric equations for the line that passes through the point (3, 2) and is parallel to the line y = 2 3 x + 7. 15

Example: Find a vector equation of the line that passes through the point (1, 4) and is perpendicular to the line with vector equation r(t) = 3 5t, 2 + 7t. Determine whether the lines r 1 (t) = ( 1 2t)i + (2 + t)j and r 2 (s) = (5 + 3s)i + (3 + 6s)j are parallel, perpendicular, or neither. If they are not parallel, find the point of intersection. 16