Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Similar documents
Effects of Reheating on Leptogenesis

L Breaking: (Dark) Matter & Gravitational Waves

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

Leptogenesis with Composite Neutrinos

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

The Standard Model of particle physics and beyond

arxiv: v1 [hep-ph] 25 Jan 2008

Grand Unification & the Early Universe

Recent progress in leptogenesis

The Matter-Antimatter Asymmetry and New Interactions

Making Dark Matter. Manuel Drees. Bonn University & Bethe Center for Theoretical Physics. Making Dark Matter p. 1/35

Inflaton decay in supergravity and the new gravitino problem

The first one second of the early universe and physics beyond the Standard Model

Astroparticle Physics and the LC

Successful Leptogenesis in the Left-Right Symmetric Seesaw Mechanism

Testing the low scale seesaw and leptogenesis

Inflation from a SUSY Axion Model

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Astroparticle Physics at Colliders

Cosmological Family Asymmetry and CP violation

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Testing leptogenesis at the LHC

Matter vs Anti-matter

Probing the Early Universe with Baryogenesis & Inflation

Yang-Hwan, Ahn (KIAS)

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Big Bang Nucleosynthesis

Supersymmetry in Cosmology

F. Börkeroth, F. J. de Anda, I. de Medeiros Varzielas, S. F. King. arxiv:

arxiv:hep-ph/ v2 8 Mar 2006

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino theory of everything? dark matter, baryogenesis and neutrino masses

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Baryon-Dark Matter Coincidence. Bhaskar Dutta. Texas A&M University

Yang-Hwan, Ahn (KIAS)

Natural Nightmares for the LHC

Baryogenesis in Higher Dimension Operators. Koji Ishiwata

Revisiting gravitino dark matter in thermal leptogenesis

Flaxion. a minimal extension to solve puzzles in the standard EW 2018, Mar. 13, 2018

Electroweak Baryogenesis in Non-Standard Cosmology

Leptogenesis. Neutrino 08 Christchurch, New Zealand 30/5/2008

Implications of a Heavy Z Gauge Boson

Right-handed SneutrinoCosmology and Hadron Collider Signature

Baryogenesis via mesino oscillations

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

A model of the basic interactions between elementary particles is defined by the following three ingredients:

Neutrino Mass Seesaw, Baryogenesis and LHC

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Duality in left-right symmetric seesaw

Antiproton Limits on Decaying Gravitino Dark Matter

21th. December 2007 Seminar Univ. of Toyama. D6 Family Sym. and CDM at LHC J. Kubo, Y. Kajiyama (Phys. Rev. D )

Dark Matter and Gauged Baryon Number

Hidden Sector Baryogenesis. Jason Kumar (Texas A&M University) w/ Bhaskar Dutta (hep-th/ ) and w/ B.D and Louis Leblond (hepth/ )

CP Violation, Baryon violation, RPV in SUSY, Mesino Oscillations, and Baryogenesis

arxiv:hep-ph/ v1 20 Mar 2002

Creating Matter-Antimatter Asymmetry from Dark Matter Annihilations in Scotogenic Scenarios

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Leptogenesis via varying Weinberg operator

Probing the Majorana nature in radiative seesaw models at collider experiments

A Novel and Simple Discrete Symmetry for Non-zero θ 13

A natural solution to the gravitino overabundance problem

Leptogenesis via Higgs Condensate Relaxation

Solar and atmospheric neutrino mass splitting with SMASH model

Grand Unification. Strong, weak, electromagnetic unified at Q M X M Z Simple group SU(3) SU(2) U(1) Gravity not included

The Yang and Yin of Neutrinos

Sterile Neutrinos in Cosmology and Astrophysics

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Neutrino Masses SU(3) C U(1) EM, (1.2) φ(1, 2) +1/2. (1.3)

Baryogenesis via mesino oscillations

Unified Dark Matter. SUSY2014 Stephen J. Lonsdale. The University of Melbourne. In collaboration with R.R. Volkas. arxiv:

Dark Matter Decay and Cosmic Rays

Lepton Flavor Violation

Gravitino LSP as Dark Matter in the Constrained MSSM

SOME COMMENTS ON CP-VIOLATION AND LEPTOGENESIS

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

Lecture 18 - Beyond the Standard Model

Leptogenesis and the Flavour Structure of the Seesaw

Neutrinos, GUTs, and the Early Universe

Overview of mass hierarchy, CP violation and leptogenesis.

Mirror fermions, electroweak scale right-handed neutrinos and experimental implications

GUTs, Inflation, and Phenomenology

University College London. Frank Deppisch. University College London

CTP Approach to Leptogenesis

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Split Supersymmetry A Model Building Approach

Falsifying High-Scale Leptogenesis at the LHC

Neutrino masses, dark matter and baryon asymmetry of the universe

Flavor Physics in the multi-higgs doublet models induced by the left-right symmetry

Intermediate scale supersymmetric inflation, matter and dark energy

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

Invisible Sterile Neutrinos

Sterile Neutrino Dark Matter & Low Scale Leptogenesis from a Charged Scalar

COLLIDER STUDIES OF HIGGS TRIPLET MODEL

A Domino Theory of Flavor

Big Bang Nucleosynthesis and Particle Physics

Left-Right Symmetric Models with Peccei-Quinn Symmetry

Sterile Neutrinos as Dark Matter. Manfred Lindner

Transcription:

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph]. In collaboration with W. Buchmüller and G. Vertongen. 6. Kosmologietag, IBZ, Bielefeld University May 5, 2011

Outline 1 Idea Reheating through heavy neutrino decays Leptogenesis and gravitino dark matter 2 Scenario False vacuum decay Particle interactions 3 Analysis Parameter study Conclusion Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 2 / 10

Idea Reheating through heavy neutrino decays Origin of the hot phase of the early universe? Epoch dominated by energy in radiation: Evidence: CMB (T 0.25eV) and BBN (T 1MeV). Paradigm: Preceded by inflation (vacuum domination). Transition? Reheating mechanism and T RH unknown. Definition T RH : H (T =: T RH ) = Γ X T RH 0.2 Γ X M P. Γ X free parameter! Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 3 / 10

Idea Reheating through heavy neutrino decays Origin of the hot phase of the early universe? Epoch dominated by energy in radiation: Evidence: CMB (T 0.25eV) and BBN (T 1MeV). Paradigm: Preceded by inflation (vacuum domination). Transition? Reheating mechanism and T RH unknown. Definition T RH : H (T =: T RH ) = Γ X T RH 0.2 Γ X M P. Γ X free parameter! Our idea: Entropy from heavy neutrino decays Assume dominant N 1 abundance after inflation. Type I seesaw: Add heavy Majorana neutrinos N i to the SM. At tree-level Γ N1 = m 1 8π (M 1/v EW ) 2, m 1 := ( m Dm D )11 /M 1. T RH = T RH ( m 1,M 1 ) 10 9 10 GeV for typical m 1 & M 1. Baryon asymmetry & dark matter are natural by-products. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 3 / 10

Idea Reheating through heavy neutrino decays Origin of the hot phase of the early universe? Epoch dominated by energy in radiation: Evidence: CMB (T 0.25eV) and BBN (T 1MeV). Paradigm: Preceded by inflation (vacuum domination). Transition? Reheating mechanism and T RH unknown. Definition T RH : H (T =: T RH ) = Γ X T RH 0.2 Γ X M P. Γ X free parameter! Our idea: Entropy from heavy neutrino decays Assume dominant N 1 abundance after inflation. Type I seesaw: Add heavy Majorana neutrinos N i to the SM. At tree-level Γ N1 = m 1 8π (M 1/v EW ) 2, m 1 := ( m Dm D )11 /M 1. T RH = T RH ( m 1,M 1 ) 10 9 10 GeV for typical m 1 & M 1. Baryon asymmetry & dark matter are natural by-products. Consistent cosmology and non-trivial parameter relations! Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 3 / 10

Idea Leptogenesis and gravitino dark matter Baryon asymmetry and dark matter [Fukugita & Yanagida 86] [Buchmüller et al. 05] [Bolz et al. 01] [Steffen & Pradler 07] Baryogenesis through leptogenesis: η B := n B /n γ 6 10 10 η sym B 10 18. SM sphalerons convert L into B asymmetry (c sph ). Seesaw & neutrino data: M 1 T L 10 9 10 GeV. (Non-)thermal N 1 production: η B = η B ( m 1,M 1 ). ε 1 = Γ Γ Γ+ Γ CP-violating out-of-equilibrium N 1 neutrino decays Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 4 / 10

Idea Leptogenesis and gravitino dark matter Baryon asymmetry and dark matter [Fukugita & Yanagida 86] [Buchmüller et al. 05] [Bolz et al. 01] [Steffen & Pradler 07] Baryogenesis through leptogenesis: η B := n B /n γ 6 10 10 η sym B 10 18. SM sphalerons convert L into B asymmetry (c sph ). Seesaw & neutrino data: M 1 T L 10 9 10 GeV. (Non-)thermal N 1 production: η B = η B ( m 1,M 1 ). ε 1 = Γ Γ Γ+ Γ CP-violating out-of-equilibrium N 1 neutrino decays Th. prod. of gravitinos in SUSY QCD: Do not spoil BBN or overclose the universe. DM for free if gravitino is heavy stable LSP. Ω Gh 2 (T RH,m G,m g ) 0.11 Ω DM h 2. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 4 / 10

Idea Leptogenesis and gravitino dark matter Baryon asymmetry and dark matter [Fukugita & Yanagida 86] [Buchmüller et al. 05] [Bolz et al. 01] [Steffen & Pradler 07] Baryogenesis through leptogenesis: η B := n B /n γ 6 10 10 η sym B 10 18. SM sphalerons convert L into B asymmetry (c sph ). Seesaw & neutrino data: M 1 T L 10 9 10 GeV. (Non-)thermal N 1 production: η B = η B ( m 1,M 1 ). ε 1 = Γ Γ Γ+ Γ CP-violating out-of-equilibrium N 1 neutrino decays Connect the two sectors! Ω Gh 2 ( m 1,M 1,m G,m g ) = Ω DM h 2 Keep m g fixed & solve for M 1. M 1,T RH,η B = f ( m 1,m G). Th. prod. of gravitinos in SUSY QCD: Do not spoil BBN or overclose the universe. DM for free if gravitino is heavy stable LSP. Ω Gh 2 (T RH,m G,m g ) 0.11 Ω DM h 2. Impose η B ( m 1,m G) η obs B. Mutual bounds m 1 m G. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 4 / 10

Scenario False vacuum decay Generating a dominant nonthermal N 1 abundance SSB of U(1) B L at v B L by gauge singlet S: ( Seesaw: 1 2 M i n C n Ri Ri + h.c. ) violates lepton number L. ( Interpretation: 1 2 h(n) i n C n Ri RiS + h.c. ), S v B L + 1 S. 2 Hybrid inflation = Chaotic inflation+ssb S be the field coupling to the inflaton φ in hybrid inflation. False vacuum decay breaks B L and ends inflation. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 5 / 10

Scenario False vacuum decay Generating a dominant nonthermal N 1 abundance SSB of U(1) B L at v B L by gauge singlet S: ( Seesaw: 1 2 M i n C n Ri Ri + h.c. ) violates lepton number L. ( Interpretation: 1 2 h(n) i n C n Ri RiS + h.c. ), S v B L + 1 S. 2 Hybrid inflation = Chaotic inflation+ssb S be the field coupling to the inflaton φ in hybrid inflation. False vacuum decay breaks B L and ends inflation. Tachyonic preheating: [Felder et al. 01] [García-Bellido & Ruiz Morales 02] Instability for φ < φ crit causes explosive spinodal growth of long-wavelength S modes: Waterfall transition! False vacuum energy density transferred to non-relativistic S bosons and due to expected h (n) i to N 2,3 neutrinos. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 5 / 10

Scenario False vacuum decay Generating a dominant nonthermal N 1 abundance SSB of U(1) B L at v B L by gauge singlet S: ( Seesaw: 1 2 M i n C n Ri Ri + h.c. ) violates lepton number L. ( Interpretation: 1 2 h(n) i n C n Ri RiS + h.c. ), S v B L + 1 S. 2 Hybrid inflation = Chaotic inflation+ssb S be the field coupling to the inflaton φ in hybrid inflation. False vacuum decay breaks B L and ends inflation. Tachyonic preheating: [Felder et al. 01] [García-Bellido & Ruiz Morales 02] Instability for φ < φ crit causes explosive spinodal growth of long-wavelength S modes: Waterfall transition! False vacuum energy density transferred to non-relativistic S bosons and due to expected h (n) i to N 2,3 neutrinos. Assume 2M 1 m S 2M 2,3 s.t. S decays after SSB yield dominant N 1 abundance. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 5 / 10

Scenario Particle interactions Initial State after N 2,3 Decay Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 6 / 10

Scenario Particle interactions Decay of Non-Thermally Produced N 1 Neutrinos Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 6 / 10

Scenario Particle interactions Decay of Thermally Produced N 1 Neutrinos Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 6 / 10

Scenario Particle interactions Boltzmann equations (S) ˆLf S (t,p) = m S E S Γ 0 S f S (t,p) ( N S 1 ) ( N T 1 ) ˆLf S N 1 (t,p) = M 1 E N1 Γ 0 N 1 f S N 1 (t,p) + 2 π2 Γ 0 S N S δ(e N1 m S /2) a 3 EN 2 1 ( ) ah d da NT N 1 = Γ T N 1 NN T 1 N eq N 1 ( ) (B L) ah d da N B L = ε 1 Γ S N 1 NN S 1 + ε 1 Γ T N 1 NN T 1 N eq N 1 ( G) 1 (2M 1 /m S ) 2 Neq N 1 2N eq l ( ) [ ah d da N G = κ G a 3 (T ) m2 g 54ζ (3)gs 1 + 2 (T ) π 2 T 6 ln M p 3m 2 G ( ) (R) ah d da N R = r S R Γ S N 1 NN S 1 + r T R Γ T N 1 NN T 1 N eq N 1 Γ T N 1 N B L ( T 2 m 2 g(t ) ) ] + 0.8846 with ˆL = t Hp, Γ S/T p N 1 = M1 E N1 Γ S/T 0 N 1, κ G O(1) and r S/T R = 3ρS/T N n R 1. 4n S/T N ρ R 1 Coupled system of non-linear first-order partial differential eqns. Solve for phase space distr. funcs. & number densities in an expanding FLRW background. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 7 / 10

Analysis Parameter study Reheating temperature and baryon asymmetry M 1 (v B L, m 1,m G,m g ) s. t. Ω Gh 2 = 0.11 η B (v B L, m 1,M 1 ) = η S B + η T B > η obs B Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 8 / 10

Analysis Parameter study Reheating temperature and baryon asymmetry M 1 (v B L, m 1,m G,m g ) s. t. Ω Gh 2 = 0.11 η B (v B L, m 1,M 1 ) = η S B + η T B > η obs B Appreciate: Thermal bounds significantly alleviated! Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 8 / 10

Analysis Parameter study Reheating temperature and baryon asymmetry M 1 (v B L, m 1,m G,m g ) s. t. Ω Gh 2 = 0.11 η B (v B L, m 1,M 1 ) = η S B + η T B > η obs B Appreciate: Thermal bounds significantly alleviated! Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 8 / 10

Analysis Parameter study Reheating temperature and baryon asymmetry M 1 (v B L, m 1,m G,m g ) s. t. Ω Gh 2 = 0.11 η B (v B L, m 1,M 1 (v B L, m 1,m G,m g )) > η obs B Appreciate: Thermal bounds significantly alleviated! Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 8 / 10

Analysis Parameter study Connection between SUGRA and neutrino parameters Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 9 / 10

Analysis Parameter study Connection between SUGRA and neutrino parameters Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 9 / 10

Analysis Parameter study Connection between SUGRA and neutrino parameters Scenario works in large region of parameter space! T RH bound lowered: 10 9 GeV 10 7 GeV. m 1 and m G mutually constrain each other. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 9 / 10

Analysis Conclusion All you need is neutrino decays! Idea: Neutrino decays produce all entropy of the hot early universe. Reheating temperature T RH determined by neutrino lifetime Γ N1 ( m 1,M 1 ). BAU through leptogenesis and gravitino DM follow naturally + interrelated. Scenario: Dominant nonth. N 1 abundance after false vacuum decay. Hybrid inflation ends in SSB of local U(1) B L and tachyonic preheating. Vacuum energy density Higgs bosons of B L breaking N 1 neutrinos. Analysis: Quantitative results after solving the Boltzmann equations. T RH, η B and Ω Gh 2 from Lagrangian parameters v B L, m 1, M 1, m G and m g. m 1 constrains m G and vice versa. Falsification: Measure m i 0.1eV. Connection b/t collider searches, laboratory exps. and cosmological obs. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 10 / 10

Analysis Conclusion All you need is neutrino decays! Idea: Neutrino decays produce all entropy of the hot early universe. Reheating temperature T RH determined by neutrino lifetime Γ N1 ( m 1,M 1 ). BAU through leptogenesis and gravitino DM follow naturally + interrelated. Scenario: Dominant nonth. N 1 abundance after false vacuum decay. Hybrid inflation ends in SSB of local U(1) B L and tachyonic preheating. Vacuum energy density Higgs bosons of B L breaking N 1 neutrinos. Analysis: Quantitative results after solving the Boltzmann equations. T RH, η B and Ω Gh 2 from Lagrangian parameters v B L, m 1, M 1, m G and m g. m 1 constrains m G and vice versa. Falsification: Measure m i 0.1eV. Connection b/t collider searches, laboratory exps. and cosmological obs. Thank you for your attention! Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 10 / 10

Appendix Froggatt-Nielson flavor model Yukawa couplings Superpotential for matter fields in SU(5) notation: W M = h (u) ij 10 i 10 j H u + h (d) ij 5 i 10 j H d + h (ν) ij 5 i 1 j H u + h (n) i 1 i 1 i S. Fermion irreps: 10 i = (q i,ui c,ei c) ; 5 i = (di c,l i ) ; 1 i = (n i ) ; N i := n i + ni c. Froggatt-Nielson U(1) FN flavor symmetry: [Buchmüller & Yanagida 99] Yukawa terms are generated from non-renorm. U(1) FN -inv. higher-dim. operators: h ij η Q i +Q j ; η := v FN /Λ 1/ 300 ; Λ > Λ GUT. FN parameter η and charges Q i determined from quark and lepton mass hierarchies. ψ i 10 3 10 2 10 1 5 3 5 2 5 1 1 3 1 2 1 1 Q i 0 1 2 a a a + 1 b c d Specific example: a = 0.5, d = 1.5. Require M 1 M 2,3 = m S b = c = d 1 = 0.5. v B L 6 10 13 GeV ; M 1 10 10 Gev ; M 2,3 = m S v B L. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 1 / 4

i Appendix f Exemplary parameter point Comoving number densities Inverse temperature M 1 T 10 1 10 0 10 1 10 2 N(a) = a 3 n(a) abs N a 10 40 10 35 10 30 10 25 N 1 T S N 1 eq N 1 S a RH a ts a t1 a trh a RH R B L 10 20 10 0 10 1 10 2 10 3 10 4 10 5 Scale factor a G v B L = 6 10 13 GeV M 1 = 1 10 10 GeV m 1 = 3 10 3 ev m G = 100GeV m g = 800GeV ε max 1 = +1 10 6 ε2,3 max = 4 10 4 η max B = 1.9 10 8 > η obs B Ω Gh 2 = 0.11 = Ω obs DM h2 6 10 10 10 34 10 32 10 30 10 28 10 26 10 24 N 1 eq N 1 T B L Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 2 / 4

Appendix Generalization to different gluino masses Rescaling the gravitino mass for m g 800GeV ( Solve Ω Gh 2 T RH,m 0 G,800GeV ) = Ω Gh 2 (T RH,m G,m g ). ( ) Quadratic eq. for m G m g,m 0 G w/ two solutions m ±. G For m 0 G m g : m G = m 0 G (m g /800GeV) 2. T RH and η B unaffected as long as v B L, m 1 and M 1 are kept constant. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 3 / 4

Appendix Theoretical uncertainty in the gravitino production rate Connection between SUGRA and neutrino parameters Scenario works in large region of parameter space! T RH bound lowered: 10 9 GeV 10 7 GeV. m 1 and m G mutually constrain each other. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 4 / 4

Appendix Theoretical uncertainty in the gravitino production rate Connection between SUGRA and neutrino parameters Scenario works in large region of parameter space! T RH bound lowered: 10 9 GeV 10 7 GeV. m 1 and m G mutually constrain each other. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 4 / 4

Appendix Theoretical uncertainty in the gravitino production rate Connection between SUGRA and neutrino parameters Scenario works in large region of parameter space! T RH bound lowered: 10 9 GeV 10 7 GeV. m 1 and m G mutually constrain each other. Kai Schmitz (DESY Hamburg) Entropy, BAU and DM from Heavy Neutrino Decays 6. Kosmologietag Bielefeld May 5, 2011 4 / 4