University of Southern California School Of Engineering Department Of Electrical Engineering

Similar documents
Let s start from a first-order low pass filter we already discussed.

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

Exam-style practice: A Level

Energy & Work

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Faculty of Engineering

Si Oxidation. SiO 2. ! A method of forming SiO 2

The 7 th Balkan Conference on Operational Research BACOR 05 Constanta, May 2005, Romania

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

CHAPTER 11. Solutions for Exercises. (b) An inverting amplifier has negative gain. Thus L

EE 204 Lecture 25 More Examples on Power Factor and the Reactive Power

EE 221 Practice Problems for the Final Exam

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

1 cos. where v v sin. Range Equations: for an object that lands at the same height at which it starts. v sin 2 i. t g. and. sin g

ECE-320: Linear Control Systems Homework 1. 1) For the following transfer functions, determine both the impulse response and the unit step response.

Introduction to Electronic circuits.

V. Electrostatics Lecture 27a: Diffuse charge at electrodes

ELG4139: Op Amp-based Active Filters

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

Feedback Principle :-

Wp/Lmin. Wn/Lmin 2.5V

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

Analysis The characteristic length of the junction and the Biot number are

Is current gain generally significant in FET amplifiers? Why or why not? Substitute each capacitor with a

Projectile Motion. Parabolic Motion curved motion in the shape of a parabola. In the y direction, the equation of motion has a t 2.

Exercises for Frequency Response. ECE 102, Winter 2011, F. Najmabadi

element k Using FEM to Solve Truss Problems

Name Student ID. A student uses a voltmeter to measure the electric potential difference across the three boxes.

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Transient Conduction: Spatial Effects and the Role of Analytical Solutions

Chapter 9 Compressible Flow 667

Common Gate Amplifier

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

APPLICATIONS: CHEMICAL AND PHASE EQUILIBRIA

WYSE Academic Challenge 2004 Sectional Physics Solution Set

PHY2053 Summer 2012 Exam 2 Solutions N F o f k

CHAPTER 3 ANALYSIS OF KY BOOST CONVERTER

Final Exam Spring 2014 SOLUTION

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

I I I I. NOBLm NOBLE NOBLE S1 JAMES CLAIMS MINING CORPORATION LTD GRID TOPOGRAPHY GEOLOGY 9 MINERAL CLAIMS LEGEND SYMBOL. 00 i. lo 0f 0 Iv SO.

(b) Using the ideal gas equation of state, and noting that the total mass of gas occupies the same total volume at the final state as initially: where

Chapter 8. Root Locus Techniques

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

Section 3: Detailed Solutions of Word Problems Unit 1: Solving Word Problems by Modeling with Formulas

Approach: (Equilibrium) TD analysis, i.e., conservation eqns., state equations Issues: how to deal with

actuary )uj, problem L It X Projection approximation Orthogonal subspace of !- ( iii. ( run projection of Pcxzll rim orthogonal ( Nuu, y H, ye W )

ECE 2100 Circuit Analysis

Nonisothermal Chemical Reactors

Pythagorean triples. Leen Noordzij.

WEYL MANIFOLDS WITH SEMI-SYMMETRIC CONNECTION. Füsun Ünal 1 and Aynur Uysal 2. Turkey.

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics

Problem #1. Known: All required parameters. Schematic: Find: Depth of freezing as function of time. Strategy:

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

ME2142/ME2142E Feedback Control Systems. Modelling of Physical Systems The Transfer Function

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

Physics 107 HOMEWORK ASSIGNMENT #20

Electrical Circuits II (ECE233b)

Thermodynamics Lecture Series

FYSE400 ANALOG ELECTRONICS

Lecture 13 - Boost DC-DC Converters. Step-Up or Boost converters deliver DC power from a lower voltage DC level (V d ) to a higher load voltage V o.

Disclaimer: This lab write-up is not

Part III Lectures Field-Effect Transistors (FETs) and Circuits

Frequency Response of Amplifiers

Problem 1. Refracting Surface (Modified from Pedrotti 2-2)

CHAPTER 3: FEEDBACK. Dr. Wan Mahani Hafizah binti Wan Mahmud

A/2 l,k. Problem 1 STRATEGY. KNOWN Resistance of a complete spherical shell: r rk. Inner and outer radii

Independent Joint Control

Given the following circuit with unknown initial capacitor voltage v(0): X(s) Immediately, we know that the transfer function H(s) is

Chapter 5: Root Locus

Thermodynamics of Materials

7-84. Chapter 7 External Forced Convection

Exclusive Technology Feature. Eliminate The Guesswork When Selecting Primary Switch V DD Capacitors. ISSUE: May 2011

OVERVIEW Properties of Similarity & Similarity Criteria G.SRT.3

Circuits Op-Amp. Interaction of Circuit Elements. Quick Check How does closing the switch affect V o and I o?

UNIVERSITY OF UTAH ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT. 10k. 3mH. 10k. Only one current in the branch:

Root locus ( )( ) The given TFs are: 1. Using Matlab: >> rlocus(g) >> Gp1=tf(1,poly([0-1 -2])) Transfer function: s^3 + 3 s^2 + 2 s

Exercises H /OOA> f Wo AJoTHS l^»-l S. m^ttrt /A/ ?C,0&L6M5 INFERENCE FOR DISTRIBUTIONS OF CATEGORICAL DATA. tts^e&n tai-ns 5 2%-cas-hews^, 27%

PHY2049 Exam 2 solutions Fall 2016 Solution:

Kinetic Model Completeness

Grumman F-14 Tomcat Control Design BY: Chike Uduku

and decompose in cycles of length two

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

PHYSICS 536 Experiment 12: Applications of the Golden Rules for Negative Feedback

Lucas Imperfect Information Model

Quick Visit to Bernoulli Land

Conservation of Momentum

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

NONISOTHERMAL OPERATION OF IDEAL REACTORS Plug Flow Reactor. F j. T mo Assumptions:

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING

CHAPTER 2 Algebraic Expressions and Fundamental Operations

A L A BA M A L A W R E V IE W

PHYSICS 151 Notes for Online Lecture #23

CONVEX COMBINATIONS OF ANALYTIC FUNCTIONS

SPH3U1 Lesson 06 Kinematics

, which yields. where z1. and z2

Chapter 8 Predicting Molecular Geometries

Introduction to Interfacial Segregation. Xiaozhe Zhang 10/02/2015

" 1 = # $H vap. Chapter 3 Problems

Figure 1 Siemens PSSE Web Site

Lecture 4. Chapter 11 Nise. Controller Design via Frequency Response. G. Hovland 2004

Transcription:

Unverty f Suthern afrna Sch Of Enneern Deartent Of Eectrca Enneern EE 48: ewrk nent # fa, Due 9/7/ ha Fure : The redrawn cnfuratn f "F P." t b t a Gven the fure, ne can wrte the fwn equatn: λ t t { λ } t b t b b λ t b t t t λ b λb NS. #.a t ad retance tted λb That t cncude that the reut btaned abve the ae a where the ad wa nfntey are, hwever; t nt the ae a rnay derved exren. b Snce a caactr w euate an en crcut at w frequence, th w ve u the an that derved n art a NS. #.b

c Fure : The cheatc t fnd utut retance I x b avn the cheatc abve, the equatn bew can be wrtten. x λb b x ut I x λ b x x NS. #.c d By nectn, n nfnty. NS. #.d e By nectn, te cntant the retance, that een by the caactr, te caactr tef. Therefre: τ ut NS. #.e f In a ne e yte, a n ur cae, the bandwdth f the tranfer functn equa t ne ver the te cntant. Thu, NS. #.f ut v By exann, the frt tw ectn, and f ectn, ne can arrve a reut that: ut b v λ NS. #. ut

ere, t advantaeu t have n ad deendence. ence, ne can den h crcut wthut wrryn abut the ad. h By un a f the equatn, ne can btan reut bew: v.78 τ.5 n NS. #.h f ut 56.5 Ω.8 9 rad 7. Mhz Fure a eactance f nductr at renance equa t nductance te that renant frequency rad/. ence, NS. #.a b We ut utze vtae dvder t fnd the tranfer functn. Therefre, r where NS. #.b

c In revu tw equatn, the frer enera fr f the atter. In rder t fnd, equate th antude functn t antude f zer an ver quare rt f tw. By un th equaty, ne can eay fuf fwn aebrac te t attan the vaue f frequency. S where S where NS. #.b 4 4

NS. #.c Nrazed rah f th w be a fw:.8.6.4 w/w..8.6.4...4.7..6.9..5.8..4.7 4 4. 4.6 4.9 5. 5.5 5.8 d W c S S W I W W S I NS. #.d W S Th y uet that the enery tranferred n between caactr and nductr. ence, there n tta enery dated. eferrn t art b f the ecnd quetn, ne can tranfr that frequency baed tranfer functn nt aace dan. The ny thn that t be dne that wtchn n between? and. a Once we atch th ecfc tranfer functn wth the enera tranfer functn ven n the quetn. One can eay fnd the fwn a they are wrtten.

c ζ n n n ζ NS. #.4a n ζ NS. #.4a The renant frequency eaure f bandwdth, and zeta eaure f tabty. b c c ζ n n v c v v e ζ n t { } n ζ t c ζ e e t v v t c c ζ n t e n ζ t n ζ t c ζ ζ v v c c c t n NS. #.4c NS. #.4b vetn..8.6.4.?.5?.9?.77 -. -.4 -.6..5.9..7..5.9..7 4. 4.54.95.5.7 6.?.5 6.56.97.7.7 8. 8.58.99.9.7..5 tn --[wnt] Fure 4.9..7..5.9..7 4. 4.5 4.9 5. 5.7 6. 6.5 6.9 7. 7.78. 8.5 8.9 9. 9.7

d In th art, we have an errr functn and we d nt want th functn t be any arer than ne ercent f teady tate vaue. By nectn f th errr functn ne can ay that envee f th functn a decayn exnenta, th exnenta, becaue at eak nu are equa t ne r nu ne, thu we are eft wth exnenta ne. We, f ne take the dervatve f the errr functn ne fnd the axa f t by equatn t t zer, he can enure nt any arer errr than.. Dn ha ve u reut bew. e ζ nt. 4.65 t n ζ NS. #.4d e In rder t uarantee that errr never arer than. ercent, we hud fnd the frt axa f errr functn dn w ve u fwn reatn h: t n π π 4.65 ζ ζ ζ ζ π n π t ζ NS. #.4e 887. M z.86 4 Fure 5

a avn the cheatc n the fure, ne can wrte the equatn bew: I I I I NS. #.5a b One can ue enera band a exren t arrve at the reut. The thn nce we have thee enera exren n ntnc fr, and we ut need t atch enera and ecfc and fnd ut and?. NS. #.5b c In rder t fnd the renant frequency an f a band a fter, ne ut need t take rat f ceffcent f. In th cae, t equa t ne. T rve th t rea eay. We, at renant frequency: NS. #.5c cance ut the ne n dennatr d They can nt be cntred ndeendenty. hann,,, t chane? w certany affect t. wever, f ne de ny want t chane, he can d wthut affectn?. T d, hud be tuned. NS. #.5d e Of cure, t rtant tune and? wthut affectn each ther becaue ay yu want t fr.5 Mz t 6.7 Mz. T d yu w chane center frequency, but f yur fter the ne ke we have, when yu chane center frequency yu a chane. Fr exae, t fr.5 Mz t

6.7 Mz frequence, bacay yu w ncreae center frequency. T d, yu need t chane, r, r. hann thee w a chane ether akn t ber r aer. nd th w ntrduce ether a tabty r ne rbe. NS. #.5e 5 a Baed n the crcut abve, ne can wrte the equatn n tabe x x x x x fter rearrann th e, ne ha et fwn fna reut: 4 4 NS. #.5a Fure 6

fter the carn wth the enera exren reented n the quetn, we can arrve at: NS. #.5a 4 b If e nfnty, r dan factr e t zer, we w have catn n ur yte. ence, catn cndtn : 4 4 NS. #.5b c Fr tabty, ne need t nt zer r neatve, thu: < 4 NS. #.5c d If ne u, nt equatn fnd fr dbb frequency n rbe, he can eay hw that: 6 ence, NS. #.5d 4 4 4 e Equatn the dennatr f enera exren, when.5, t zer ne et the e. Thu, NS. #.5e, ± 4, ± Fure 7

a Bacay, f ne ke t have w yte, he hud den h crcut wth rea e. NS. #.6a b By atchn the abve wth derved ne fr crcut n fure, ne can eay arrve at fwn reut: // NS. #.6b NS. #.6b k k

k k v t k e k v t c t k k t e k t k t fr k > fr k e NS. #.6c d..8 k vtn.6.4 k.5 k. k..4.7..6.9..5.8..4.7 4 4. 4.6 4.9 5. 5.5 5.8 tn --[t] Fure 8 Fr the t, when k equa t ne we ha et wet yte. NS. #.6d e T T e. T. 9 NS. #.6e

f T fr >>.9 T NS. #.6f.95 T.9 T.95 T.9.9 T T NS. #.6f 7. 8 7 µ 5n 7.8 Ω µ Ω 6..95 NS. #.6 The uatn rah and net-t are n the fwn tw ae. The buffer n th rbe can be redrawn a abve where: f a b Fure 9 NS. #.7a

tae n Wave D::v Syb 95 9 85 8 75 7 65 6 55 5 45 4 5 5 5 5-5 rbe 6 urrent X.e-4 urrent Y8.9e- Dervatve.5e u u u 4u Te n TIME

Prbe 6 * * *.t t ue 5n 5n 5u u 5 5n 6..tran 5u 4u.end

frequency equa t ne ver ceffcent f, when the dennatr ntnc fr fr frt rder yte. ence, B NS. #.7b c Th vtae te n f hw t defned n revu ectn. Thu, NS. #.7c d ε. IM ε.9898 NS. #.7d 8 avn crcut n the fure, ne can eay wrte equatn t fnd nut edance. Thu, Fure I x G I I x I xgzg I x xgzg x I G Z G NS. #.9a Zn n GG G G x n