Lens Design I. Lecture 12: Correction I Herbert Gross. Summer term

Similar documents
Imaging and Aberration Theory

Imaging and Aberration Theory

Lens Design II. Lecture 7: Chromatical correction II Herbert Gross. Winter term

Coma aberration. Lens Design OPTI 517. Prof. Jose Sasian

Basic Waves and Optics

Astigmatism Field Curvature Distortion

Seidel sums and a p p l p icat a ion o s f or o r s imp m l p e e c as a es

Overview of Aberrations

Lens Design II. Lecture 7: Chromatical correction II Herbert Gross. Winter term

Imaging and Aberration Theory

Design and Correction of Optical Systems

Fluids Lecture 2 Notes

Lens Design II. Lecture 7: Chromatical correction II Herbert Gross. Winter term

Design and Correction of Optical Systems

Lens Design II. Lecture 7: Chromatical correction II Herbert Gross. Winter term

THE MEASUREMENT OF THE SPEED OF THE LIGHT

Cork Institute of Technology Bachelor of Science (Honours) in Applied Physics and Instrumentation-Award - (NFQ Level 8)

After the completion of this section the student. V.4.2. Power Series Solution. V.4.3. The Method of Frobenius. V.4.4. Taylor Series Solution

ANOTHER PROOF FOR FERMAT S LAST THEOREM 1. INTRODUCTION

Imaging and Aberration Theory

Sx [ ] = x must yield a

Section 7. Gaussian Reduction

Section 19. Dispersing Prisms

Section 19. Dispersing Prisms

arxiv:physics/ v1 [physics.optics] 31 Mar 2004

λ = 0.4 c 2nf max = n = 3orɛ R = 9

= 47.5 ;! R. = 34.0 ; n air =

Lens Design I. Lecture 13: Correction II Herbert Gross. Summer term

Physics 3 (PHYF144) Chap 8: The Nature of Light and the Laws of Geometric Optics - 1

Optics. n n. sin. 1. law of rectilinear propagation 2. law of reflection = 3. law of refraction

Design of multiplexed phase diffractive optical elements for focal depth extension

Another face of DIRECT

Design and Correction of Optical Systems

Lens Design I. Lecture 13: Correction II Herbert Gross. Summer term

Mass Transfer Chapter 3. Diffusion in Concentrated Solutions

Lesson 8 Refraction of Light

Principles of Communications Lecture 12: Noise in Modulation Systems. Chih-Wei Liu 劉志尉 National Chiao Tung University

Physics 30 Lesson 8 Refraction of Light

Chapter 35 - Refraction

We will conclude the chapter with the study a few methods and techniques which are useful

Appendix K. The three-point correlation function (bispectrum) of density peaks

Summary of formulas Summary of optical systems

Lens Design II. Lecture 1: Aberrations and optimization Herbert Gross. Winter term

A Note on Chromatic Weak Dominating Sets in Graphs

Definitions and Theorems. where x are the decision variables. c, b, and a are constant coefficients.

Certain Aspects of Univalent Function with Negative Coefficients Defined by Bessel Function

SYNTHESIS OF SIGNAL USING THE EXPONENTIAL FOURIER SERIES

The Method of Least Squares. To understand least squares fitting of data.

Chapter 35 - Refraction. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Solutions 3.2-Page 215

Chapter 4: Angle Modulation

4. Optical Resonators

Bernoulli Numbers. n(n+1) = n(n+1)(2n+1) = n(n 1) 2

INF-GEO Solutions, Geometrical Optics, Part 1

EE243 Advanced Electromagnetic Theory Lec # 24 Imaging as Diffraction

Certain inclusion properties of subclass of starlike and convex functions of positive order involving Hohlov operator

Ray Optics Theory and Mode Theory. Dr. Mohammad Faisal Dept. of EEE, BUET

Effect of Magnetic Field on Marangoni Convection in Relatively Hotter or Cooler Liquid Layer

ME260W Mid-Term Exam Instructor: Xinyu Huang Date: Mar

Two or more points can be used to describe a rigid body. This will eliminate the need to define rotational coordinates for the body!

CONCAVE ELECTRODES II: THEORETICAL FOUNDATIONS

ASSESSMENT OF MATERIALS NONLINEARITY IN FRAMED STRUCTURES OF REINFORCED CONCRETE AND COMPOSITES

SOME NOTES ON INEQUALITIES

Imaging and nulling properties of sparse-aperture Fizeau interferometers Imaging and nulling properties of sparse-aperture Fizeau interferometers

Math 155 (Lecture 3)

16th International Symposium on Ballistics San Francisco, CA, September 1996

2. SCHWARZSCHILD GEOMETRY REVISITED The metric for Schwarzschild Geometry is given by, ) (1) For constant values of time we have, c r

6.003 Homework #3 Solutions

PHYS 450 Spring semester Lecture 06: Dispersion and the Prism Spectrometer. Ron Reifenberger Birck Nanotechnology Center Purdue University

10/2/ , 5.9, Jacob Hays Amit Pillay James DeFelice

ESTIMATION OF MACHINING ERRORS ON GLEASON BEVEL

3. Z Transform. Recall that the Fourier transform (FT) of a DT signal xn [ ] is ( ) [ ] = In order for the FT to exist in the finite magnitude sense,

MULTILEVEL ANALYSIS OF DELAMINATION INITIATED NEAR THE EDGES OF COMPOSITE STRUCTURES

Handy shop formulas Ray Williamson, Ray Williamson Consulting 4984 Wellbrook Drive, New Port Richey, FL

The beta density, Bayes, Laplace, and Pólya

Properties and Hypothesis Testing

Chap.4 Ray Theory. The Ray theory equations. Plane wave of homogeneous medium

Introduction to Optimization Techniques. How to Solve Equations

Supplement S1: RNA secondary structure. structure + sequence format

ε > 0 N N n N a n < ε. Now notice that a n = a n.

Achieving transparency with plasmonic and metamaterial coatings

Observer Design with Reduced Measurement Information

Probability & Statistics Chapter 8

MTH Assignment 1 : Real Numbers, Sequences

I. ELECTRONS IN A LATTICE. A. Degenerate perturbation theory

Lecture # 07: Flow Visualization techniques: Shadowgraph and Schlieren

Distance for degree raising and reduction of triangular Bezier surfaces

Finite-Difference Time-Domain Method (FDTD)

Series: "Teaching optics" POSSIBILITIES OF ABERRATION CORRECTION IN A SINGLE SPECTACLE LENS

Intermediate Math Circles November 4, 2009 Counting II

Digital Signal Processing. Homework 2 Solution. Due Monday 4 October Following the method on page 38, the difference equation

Lecture 8. Dirac and Weierstrass

Chapter 7 COMBINATIONS AND PERMUTATIONS. where we have the specific formula for the binomial coefficients:

Addition: Property Name Property Description Examples. a+b = b+a. a+(b+c) = (a+b)+c

Diffractive optics. Introduction/terminology

CO-LOCATED DIFFUSE APPROXIMATION METHOD FOR TWO DIMENSIONAL INCOMPRESSIBLE CHANNEL FLOWS

Homework 7 Due 5 December 2017 The numbers following each question give the approximate percentage of marks allocated to that question.

Answers to test yourself questions

Production Test of Rotary Compressors Using Wavelet Analysis

Sequential Monte Carlo Methods - A Review. Arnaud Doucet. Engineering Department, Cambridge University, UK

Transcription:

Les Desig I Leture : Corretio I 05-07-06 Herbert Gross Summer term 05 www.iap.ui-jea.de

relimiary Shedule 3.04. Basis 0.04. roperties of optial systrems I 3 7.05. 4 04.05. roperties of optial systrems II roperties of optial systrems III 5.05. Advaed hadlig I 6 8.05. Aberratios I 7 0.06. Aberratios II Wave aberratios, Zerike polyomials Itrodutio, Zemax iterfae, meues, file hadlig, preferees, Editors, updates, widows, oordiates, System desriptio, 3D geometry, aperture, field, wavelegth Diameters, stop ad pupil, vigettig, Layouts, Materials, Glass atalogs, Raytrae, Ray fas ad samplig, Footprits Types of surfaes, ardial elemets, les properties, Imagig, magifiatio, paraxial approximatio ad modellig, teleetriity, ifiity objet distae ad afoal image, loal/global oordiates Compoet reversal, system isertio, salig of systems, aspheres, gratigs ad diffrative surfaes, gradiet media, solves Add fold mirror, sale system, slider, multiofiguratio, uiversal plot, diameter types, les atalogs Represetatio of geometrial aberratios, Spot diagram, Trasverse aberratio diagrams, Aberratio expasios, rimary aberratios 8 08.06. Aberratios III oit spread futio, Optial trasfer futio 9 5.06. Optimizatio I riiples of oliear optimizatio, Optimizatio i optial desig, Global optimizatio methods, Solves ad pikups, variables, Sesitivity of variables i optial systems 0.06. Optimizatio II Systemati methods ad optimizatio proess, Startig poits, Optimizatio i Zemax 9.06. Imagig Fudametals of Fourier optis, hysial optial image formatio, Imagig i Zemax 06.07. Corretio I 3 3.07. Corretio II Symmetry priiple, Les bedig, Corretig spherial aberratio, Coma, stop positio, Astigmatism, Field flatteig, Chromatial orretio, Retrofous ad telephoto setup, Desig method Field leses, Stop positio ifluee, Aspheres ad higher orders, riiples of glass seletio, Sesitivity of a system orretio

3 Cotets. Symmetry priiple. Field flatteig 3. Chromatial orretio

4 riiple of Symmetry erfet symmetrial system: magifiatio m = - Stop i etre of symmetry Symmetrial otributios of wave aberratios are doubled (spherial) Asymmetrial otributios of wave aberratio vaishes W(-x) = -W(x) Easy orretio of: oma, distortio, hromatial hage of magifiatio frot part rear part 3

5 Symmetrial Systems Ideal symmetrial systems: Vaishig oma, distortio, lateral olor aberratio Remaiig residual aberratios:. spherial aberratio. astigmatism 3. field urvature 4. axial hromatial aberratio 5. skew spherial aberratio skew spherial aberratio

6 Symmetry riiple Appliatio of symmetry priiple: photographi leses Espeially field domiat aberratios a be orreted Also approximate fulfillmet of symmetry oditio helps Triplet sigifiatly: quasi symmetry Realizatio of quasisymmetri setups i early all photographi systems Double Gauss (6 elemets) Biogo Double Gauss (7 elemets) Ref : H. Zügge

7 Coma Corretio: Symmetry riiple erfet oma orretio i the ase of symmetry But magifiatio m = - ot useful i most pratial ases Image height: y = 9 mm Symmetry priiple upil setio: meridioal sagittal Trasverse Aberratio: y' 0.5 mm y' 0.5 mm (a) (b) From : H. Zügge

Offer-System Coetri system of Offer: relatio d d r r objet M image r r d d Due to symmetry: erfet orretio of field aberratios i third order 0. astigmatism 0-0. urvature distortio 0. 0-0. 0. 0-0. M M M sum

Dyso-System Catadioptri system with m = - aordig Dyso Advatage : flat field Appliatio: lithography ad projetio Relatio: r L r M Residual aberratio : astigmatism y T S r L r M objet image mirror -0.0-0.0 0 z

0 Coma Corretio: Stop ositio ad Aspheres Combied effet, aspherial ase prevet orretio lao-ovex elemet exhibits spherial aberratio Sagittal oma y' 0.5 mm Spherial aberratio orreted with aspheri surfae aspheri Sagittal oma y' 0.5 mm aspheri aspheri Ref : H. Zügge

etzval Theorem for Field Curvature etzval theorem for field urvature:. formulatio for surfaes. formulatio for thi leses (i air) Importat: o depedee o bedig R ptz R ptz m ' k f j j k ' k ' r j k k k Natural behavior: image urved towards system objet plae roblem: olletig systems with f > 0: If oly positive leses: R ptz always egative R optial system real image shell ideal image plae

etzval Theorem for Field Curvature Goal: vaishig etzval urvature ad positive total refrative power for multi-ompoet systems R f ptz f j h h j f j j j Solutio: Geeral priiple for orretio of urvature of image field:. ositive leses with: - high refrative idex - large margial ray heights - gives large otributio to power ad low weightig i etzval sum. Negative leses with: - low refrative idex - samll margial ray heights - gives small egative otributio to power ad high weightig i etzval sum

3 Flatteig Meisus Leses ossible leses / les groups for orretig field urvature Iterestig adidates: thik mesisus shaped leses r k ' k ' r Rptz k k k k f d r r r d. Hoeghs mesius: idetial radii - etzval sum zero - remaiig positive refrative power F' ( ) r d. Coetri meisus, - etzval sum egative - weak egative foal legth - refrative power for thikess d: r R ptz r d ( ) d r r d ( ) d F' r ( r d) 3. Thik meisus without refrative power Relatio betwee radii r r d R ptz r ( ) d r d ( ) 0

4 Corretig etzval Curvature Group of meisus leses d ollimated r r Effet of distae ad refrative idies /R pet [/mm] 0 - K5 / d=5 mm 0 - K5 / d=5 mm SF66 / d=5 mm 0-3 0 0 30 40 50 r [mm]

5 Corretig etzval Curvature Triplet group with + - + r r r 3 d/ ollimated Effet of distae ad refrative idies 0 - /R pet [/mm] SF66 / FK3 / SF66 0 - BK7 0-3 50 70 00 r [mm]

Field Curvature 6 Corretio of etzval field urvature i lithographi les for flat wafer R j F j j ositive leses: Gree h j large Negative leses : Blue h j small F j h h j F j Corretio priiple: ertai umber of bulges

7 Flatteig Field Les Effet of a field les for flatteig the image surfae. Without field les. With field les urved image surfae image plae image shell flat image field les

Ahromate : Basi Formulas Idea:. Two thi leses lose together with differet materials. Total power F F F 3. Ahromati orretio oditio F F 0 Idividual power values F F F F roperties:. Oe positive ad oe egative les eessary. Two differet sequees of plus (row) / mius (flit) 3. Large -differee relaxes the bedigs 4. Ahromati orretio idipedet from bedig 5. Bedig orrets spherial aberratio at the margi 6. Aplaati oma orretio for speial glass hoies 7. Further optimizatio of materials redues the spherial zoal aberratio

Ahromate: Corretio Cemeted ahromate: 6 degrees of freedom: 3 radii, idies, ratio / Corretio of spherial aberratio: divergig emeted surfae with positive spherial otributio for eg > pos Choie of glass: possible goals. aplaati oma orretio. miimizatio of spherohromatism 3. miimizatio of seodary spetrum s' rim ase with solutios Bedig has o impat o hromatial orretio: is used to orret spherial aberratio at the edge Three solutio regios for bedig. o spherial orretio. two equivalet solutios 3. oe aplaati solutio, very stable ase without solutio, oly sperial miimum R ase with oe solutio ad oma orretio

Ahomati solutios i the Glass Diagram row positive les flit egative les Ahromat

Ahromate Ahromate Logitudial aberratio Trasverse aberratio Spot diagram y' 486 m 587 m 656 m = 486 m axis r p = 587 m = 656 m siu'.4 486 m 587 m 656 m 0 0. 0. s' [mm]

Relative artial Dispersio Log row ad short flit as speial realizatios of large Log row Short flit Crow Flit Ref.:H. Zuegge

3 Axial Colour : Apohromate Choie of at least oe speial glass gf Corretio of seodary spetrum: aomalous partial dispersio 0,6 0,60 N-FS6 () At least oe glass should deviate sigifiatly form the ormal glass lie 0,58 0,56 ()+() T N-KZFS (3) 656m 588m 0,54 () 90 N-FK5 80 70 60 50 40 30 0 486m -0.mm z -0.mm 436m 0 mm z

Foal power oditio Ahromati oditio Seodary spetrum Curvatures of leses arameter E The 3 materials are ot allowed to be o the ormal lie The triagle of the 3 poits should be large: small j give relaxed desig 3 F F F F 0 3 3 F F F 0 3 3 3 F F F r r 3,, a a b a a E f 3,, b b a a b E f 3,, b a a E f b a a b b a a E Apohromate 4

Buried Surfae 5 Cemeted surfae with perfet refrative idex math No impat o moohromati aberratios Oly ifluee o hromatial aberratios Espeially 3-fold emeted ompoets are advatages Ca serve as a startig setup for hromatial orretio with fulfilled moohromati orretio Speial glass ombiatios with early perfet parameters Nr Glas d d d d SK6.603 0.0000 60.8.3 F9.6030 37.96 SK5.58905 0.00003 6.3 0.6 LF.58908 40.97 3 SSK.68 0.00004 53.3 7.06 F3.6 36.07 4 SK7.6070 0.0000 59.47 0.3 BaF5.6078 49.4 d d d 3

6 riiples of Glass Seletio i Optimizatio Desig Rules for glass seletio Differet desig goals:. Color orretio: idex large dispersio differee desired positive les field flatteig etzval urvature. Field flatteig: large idex differee + + desired egative les olor orretio + - availability of glasses - - dispersio Ref : H. Zügge

Ahromati Hybrid Les Les with diffrative strutured surfae: hybrid les Refrative les: dispersio with Abbe umber = 5...90 refrative les blue gree red Diffrative les: equivalet Abbe umber d d 3.453 F Combiatio of refrative ad diffrative surfaes: ahromati orretio for ompesated dispersio C diffrative les R D red gree blue Usually remais a residual high seodary spetrum hybrid les blue gree red Broadbad olor orretio is possible but ompliated

Diffrative Optis: Siglet Solutios Combiatio of DOE ad aspherial arrier all. order d y' 50 mm y p y p diffrative surfae, phase aspherial d y' 50 mm -0.5 mm y p 0 s' y p refrative surfae, aspherial a d y' 50 mm y p -0.5 mm 0 y p s' diffrative surfae, arrier aspherial d,a y' 50 mm -0.5 mm y p 0 s' y p -0.5 mm 0 s'