EeV Neutrinos in UHECR Surface Detector Arrays:

Similar documents
Ultra- High Energy neutrinos at the Pierre Auger Observatory

The Pierre Auger Observatory and ultra-high energy neutrinos: upper limits to the diffuse and point source fluxes

Search for ultra-high energy photons and neutrinos at the Pierre Auger Observatory

UHE Cosmic Rays and Neutrinos with the Pierre Auger Observatory

PoS(ICRC2017)972. Searches for neutrino fluxes in the EeV regime with the Pierre Auger Observatory. Enrique Zas a for the Pierre Auger Collaboration b

IceCube: Ultra-high Energy Neutrinos

Mass Composition Study at the Pierre Auger Observatory

Study of the arrival directions of ultra-high-energy cosmic rays detected by the Pierre Auger Observatory

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Ultra- high energy cosmic rays

UHE Cosmic Rays in the Auger Era

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

The Pierre Auger Observatory Status - First Results - Plans

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Experimental Constraints to high energy hadronic interaction models using the Pierre Auger Observatory part-i

A search for extremely high energy neutrino flux with the 6 years of IceCube data

Results from the Pierre Auger Observatory

arxiv: v1 [astro-ph.he] 14 Jul 2017

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Ultra-High Energy Cosmic Rays: an Experimental Overview and extension plans

Search for diffuse cosmic neutrino fluxes with the ANTARES detector

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Lawrence Berkeley National Laboratory Lawrence Berkeley National Laboratory

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

Neutrino Astronomy fast-forward

OVERVIEW OF THE RESULTS

Status and results from the Pierre Auger Observatory

The Pierre Auger Project: Status and Recent Results. Pierre Auger Project. Astrophysical motivation

Measuring the neutrino mass hierarchy with atmospheric neutrinos in IceCube(-Gen2)

P. Tinyakov 1 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector. Spectrum.

Recent results from the Pierre Auger Observatory

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Hadronic interactions of ultra-high energy cosmic rays

Searching for Ultra-High Energy νs with ANITA

AugerPrime. Primary cosmic ray identification for the next 10 years. Radomír Šmída.

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

The cosmic ray energy spectrum measured using the Pierre Auger Observatory

Results from the Telescope Array Experiment

The AUGER Experiment. D. Martello Department of Physics University of Salento & INFN Lecce. D. Martello Dep. of Physics Univ. of Salento & INFN LECCE

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Parameters Sensitive to the Mass Composition of Cosmic Rays and Their Application at the Pierre Auger Observatory

SalSA. The Saltdome Shower Array: A Teraton UHE Neutrino Detector. Kevin Reil Stanford Linear Accelerator Center.

Particle Physics Beyond Laboratory Energies

Searches for astrophysical sources of neutrinos using cascade events in IceCube

arxiv: v1 [astro-ph.he] 28 Jan 2013

Cosmogenic neutrinos II

A Multimessenger Neutrino Point Source Search with IceCube

Higher Statistics UHECR observatories: a new era for a challenging astronomy

The Most Energetic Particles in Nature

Search for UHE photons and neutrinos using Telescope Array surface detector

Short review and prospects of radio detection of high-energy cosmic rays. Andreas Haungs

Lessons from Neutrinos in the IceCube Deep Core Array

Mariola Lesiak-Bzdak. Results of the extraterrestrial and atmospheric neutrino-induced cascade searches with IceCube

Anisotropy studies with the Pierre Auger Observatory

UHECRs sources and the Auger data

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

Charged Cosmic Rays and Neutrinos

Recent Results of the Telescope Array Experiment. Gordon Thomson University of Utah

First Results from the Pierre Auger Project

Experimental High-Energy Astroparticle Physics

IceCube. francis halzen. why would you want to build a a kilometer scale neutrino detector? IceCube: a cubic kilometer detector

Oscillations on Ice Tyce DeYoung Department of Physics Pennsylvania State University Exotic Physics with Neutrino Telescopes Marseilles April 5, 2013

Dr. John Kelley Radboud Universiteit, Nijmegen

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science

Ultra-High-Energy Cosmic Rays: A Tale of Two Observatories

THE PIERRE AUGER OBSERVATORY: STATUS AND RECENT RESULTS

Search for a diffuse cosmic neutrino flux with ANTARES using track and cascade events

The AMIGA detector of the Pierre Auger Observatory: an overview

Status and Perspectives for KM3NeT/ORCA

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

PoS(LeptonPhoton2015)043

Neutrino oscillation physics potential of Hyper-Kamiokande

Arrival directions of the highest-energy cosmic rays detected by the Pierre Auger Observatory

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

Some Thoughts on Laboratory Astrophysics for UHE Cosmic Rays. Pierre Sokolsky University of Utah SABRE Workshop SLAC, March, 2006

7 th International Workshop on New Worlds in Astroparticle Physics São Tomé, September 2009 THE AMIGA PROJECT

Preliminary results from gamma-ray observations with the CALorimeteric Electron Telescope (CALET)

The Pierre Auger Observatory: on the arrival directions of the most energetic cosmic rays

RESULTS FROM THE PIERRE AUGER OBSERVATORY

Recent results from Super-Kamiokande

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

Multi-Messenger Astonomy with Cen A?

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Results from the Pierre Auger Observatory. Paul Sommers, Penn State August 7, 2008, SSI

Implications of cosmic ray results for UHE neutrinos

Results of the Search for Ultra High-Energy Neutrinos with ANITA-II

The Pierre Auger Observatory

Detection of transient sources with the ANTARES telescope. Manuela Vecchi CPPM

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

A M A N DA Antarctic Muon And Neutrino Detector Array Status and Results

P. Tinyakov 1,2 TELESCOPE ARRAY: LATEST RESULTS. P. Tinyakov. for the Telescope Array Collaboration. Telescope Array detector.

IceCube Results & PINGU Perspectives

Recent Results of the Observatory Pierre Auger. João R. T. de Mello Neto Instituto de Física Universidade Federal do Rio de Janeiro

Cosmic Ray Astronomy. Qingling Ni

The air-shower experiment KASCADE-Grande

arxiv: v1 [hep-ex] 3 Dec 2018

NEW VIEWS OF THE UNIVERSE. Recent Studies of Ultra High Energy Cosmic Rays. Alan Watson University of Leeds, UK (regular KICP Visitor)

Transcription:

EeV Neutrinos in UHECR Surface Detector Arrays: OBSERVATORY Challenges & Opportunities Karl-Heinz Kampert Bergische Universität Wuppertal High-Energy neutrino and cosmic ray astrophysics - The way forward Weizmann Institute of Science January -15, 017 1 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

The Is UHECR-Flux-Suppression this the GZK-Effect? 18 E[eV] 19 arxiv:1509.0373 Update from: PRL 1, 0611 (008), Physics Letters B 685 (0) 39 0 )) s -1 sr -1 ev 4.5 4 17 13 7774 4611 639 3450 69 006 1344 6043 34861 635 16317 991 7585 51 3491 38 1405 888 569 67 130 γ1=3.9 * Eankle=4.8 18 ev γ=.60 * E50% = 4. 19 ev 54 OBSERVATORY - J /(m 3.5 4 1 3 ( E log 3 apple Is this the GZK-effect... J(E;E > E a ) µ E g log E log E 1/? 1 + exp log W c.5 g g Auger (ICRC 015 preliminary) 1 17.5 18 18.5 19 19.5 0 0.5 log (E/eV) combined from: infill+hybrid+vertical+inclined events HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Cosmogenic Neutrinos Recall: If flux suppression above 5 19 ev is due to GZK-effect: expect cosmogenic neutrinos & photons as smoking gun Additional benefit: UHE neutrino physics If due to source exhaustion: neutrinos & photons strongly suppressed 3 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

EeV ν s and γ s : Smoking gun of GZK-effect p + CMB!!! n + +! EeV! p + 0! EeV -4 p, best fit with Fermi-LAT bound (Ahlers) KHK, Unger, APP 35 (01) s -1 sr -1 ] - dn/de [ GeV cm E -5-6 -7-8 -9 0 p, FRII & SFR, E = max 0 Fe, FRII & SFR, E max =6 x ev (B. Sarkar) ev (B. Sarkar) 0 1.5 p & mixed, SFR & GRB, E =Z x - max GZK-Fe GZK-p ev (Kotera) TopDown models GZK-p GZK-Fe - 17 18 E ν [ev] 19 0 1 Note, these calculations assume that the flux suppression is caused solely by the GZK-effect ec?on+in+eev+range+may+provide+complementary+informa?on+to+direct+u 4 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Exhausted UHECR Sources Taylor, Ahlers, Hooper; PRD 9 (015) 063011 present upper limits by Auger 1 n = 0 / proton only n = 3/mixed n = 0/mixed ARA-37 (3yr) ARA (3yrs) E J [ev cm s 1 sr 1 ] 0 1 n = n = 3/mixed 6/mixed } maximum energy scenarios that describe UHECR spectra and composition 3 13 14 15 16 17 18 19 0 E [ev] Cosmogenic neutrino fluxes may be down by ~ orders of magnitudes for exhausted sources!! 5 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Inclined+showers+ Search for EeV Neutrinos &+UHE+neutrinos+ in inclined showers Protons+&+nuclei+ini?ate+showers+ high+in+the+atmosphere.++ Shower+front+at+ground:++ mainly+composed+of+muons+ electromagne?c+component+ absorbed+in+atmosphere.+ Neutrinos+can+ini?ate+ deep + showers+close+to+ground.+ Shower+front+at+ground:+ electromagne?c+++muonic+ components+ Searching+for+neutrinos+ + searching+for+inclined+showers+ +with+electromagne?c+component+ ν τ$ 6+ 6 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Particle Detectors and Radio Antennas This talk: Particle Detectors at the surface: Auger and beyond Optical detection by Fluorescence Telescopes not covered (lower exposure because of duty cycle) Next Talk by Jörg Hörandel: Potential of radio detection at the surface 7 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Surface Detector Station+ Surface+Detector+(SD)+sta?ons! Sensi?ve+to+inclined+showers.++ x Not+directly+sensi?ve+to+electromagne?c+and+muonic+components.+! Can+measure+the+?me+structure+of+the+signals+induced+by+electrons+and+muons+ 3.6 x 1. = 4.3 m detector area in horizontal direction. Great advantage of WCD! GPS Communications antenna electronics Solar panels 3 photomultiplier tubes Signals+are+digi?zed+with+ 5+ns+?me+resolu?on++ Battery box VEM+ FADC(trace( Example+of+signal+ induced+by+a+muon+ plastic tank 1 tons of purified water t+(ns)+ 7+ 8 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Identifying νs in surface detector data With+the+SD,+we+can+dis?nguish+muonic+from+electromagne?c+shower+fronts+ (using+the+?me+structure+of+the+signals+in+the+water+cherenkov+sta?ons).+ old shower new shower signal [VEM] signal [VEM] signal [VEM] 6 4 0-500 0 500 00 1500 000 500 3000 time [ns] 6 4 PMT 1 PMT 0-500 0 500 00 1500 000 500 3000 time [ns] 6 4 PMT 3 0-500 0 500 00 1500 000 500 3000 time [ns] 5 EeV, distance to shower axis ~1km zenith angle ~80 signal [VEM] signal [VEM] signal [VEM] 1.5 1 0.5 PMT 1-500 0 0 500 00 1500 000 500 3000 time [ns] 1.5 1 0.5 PMT -500 0 0 500 00 1500 000 500 3000 time [ns] 1.5 1 0.5 PMT 3-500 0 0 500 00 1500 000 500 3000 time [ns] 5 EeV, distance to shower axis ~1km zenith angle ~ 9 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017 8+

Identifying νs in surface detector data From+the+observa?onal+point+of+ view,+signals+extended+in+?me:+ Trace+example:+ToT+trigger+&+large+AoP+ Induce+Time&over&Threshold+ (ToT)+triggers+in+the+SD+ sta?ons+ ++++++++++++++++++++++and/or+ Defini?on+of+Area&over&Peak+(AoP)+ Have+large+Area&over&Peak+ value+(aop+ +1+muonic+front)+ Searching+for+neutrinos+ + Searching+for+inclined+showers+with+sta?ons++ with+tot+triggers+and/or+large+aop+ 9+ HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Sensi?vity+to+all+flavours+&+channels+ EAS are sensitive to all ν flavors and channels + 11 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Selection of inclined showers: 3 Observables 3+observables+ (1)+Elongated+footprint+ WW Δt ij d ij Main axis Figure 5: Schematic view of the footprint of a shower triggering the Parameters: L/W, <v>, RMS(v) LL ()+Apparent+velocity+V+of+propaga?on+of++ shower+front+at+ground+along+major+axis+l+ Ver?cal+shower++ + + V+>>+c+ Horizontal+shower++ + + V+ +c+ (3)+Reconstructed+θ$ Downward-going Downward-going Selection Earth-skimming (ES) ν high angle (DGH) low angle (DGL) Flavours and interactions ν τ CC ν e ; ν μ ; ν τ CC & NC ν e ; ν μ ; ν τ CC & NC Angular range θ >75 L/W θ > 90 >3 θ ð75 ; 90 Þ θ ð60 ; 75 Þ N of stations (N st ) L/W N>5 st 3 N st 4 N st 4 Inclined showers θ rec > 75 L=W > 5 L=W > 3 hvi ð0.9; 0.31Þ m ns 1 hvi < 0.313 m ns 1 rmsðvþ < 0.08 m ns 1 rmsðvþ=hvi < 0.08 θ rec ð58.5 ; 76.5 Þ 1 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

ν Identification: Earth Skimming Events 3 Training data Search data Monte Carlo ν τ <AoP> AoP > 1.83 ~ 90% of ν-events selected ν τ candidate region 1 Note: ν-searches not limited by background! (cut set to 1 background event per 50 yrs) -1 1 1.5.5 3 3.5 4 4.5 <AoP> AoP: Area over peak 13 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

ν Identification: Down Going (75-90 ) Events 4 AoP of stations along with other observables constructed from AoP combined in a Fisher linear discriminant Training data Search data Monte Carlo ν 3 Fisher > 3.8 1-1 ν candidate region ~ 90% of ν-events selected again: allow 1 background event per 50 yrs - -5 0 5 Fisher value 14 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Exposure: Earth Skimming ντ τ Exposure:++ 1. Tau+neutrino+propaga?on+and+tau+ Earth&skimming+ν produc?on:+ + τ Dedicated+MC+for+propaga?on+of+ 1. Tau+neutrino+propaga?on+and+tau+ ν τ +through+the+earth+producing+ produc?on:+ emerging+tau+leptons.++ Convolute+with+probability+of+tau+ Dedicated+MC+for+propaga?on+of+ decay+in+the+atmos.+(exponen?al)+ ν τ +through+the+earth+producing+. Tau+decay+products+obtained+with+ emerging+tau+leptons.++ TAUOLA+generator:++ Convolute+with+probability+of+tau+ All+decays+included++ decay+in+the+atmos.+(exponen?al)+. Tau+decay+products+obtained+with+ 17%+BR+to+muons+which+are+not+ TAUOLA+generator:++ detected+ 3. Shower+induced+by+tau+decay+ All+decays+included++ products+simulated+with+aires+ 17%+BR+to+muons+which+are+not+ detected+ 4. Detector+simula?on+performed+ 3. Shower+induced+by+tau+decay+ with+auger+offline+package+ products+simulated+with+aires+ + 4. Detector+simula?on+performed+ with+auger+offline+package+ + Events E ντ 3000 500 000 1500 00 = 500 18 ev - Energy spectra of emerging τ θ = 90.1 deg. θ = 91. deg. θ = 94.8 deg. 0 16 16. 16.4 16.6 16.8 17 17. 17.4 17.6 17.8 18 log (E /ev) τ. TAUOLA 1. ν τ PROPAGATION 4. OFFLINE 3. AIRES Mean 17.38 Mean 17.36 Mean 17. 15 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017 3+

Acceptance and Uncertainties 18 s sr ] 17 ES Earth-Skimming ντ dominates exposure (loss at higher energies due to τ decays high in the atmosphere) Exposure [ cm 16 15 DGH DGL Combined (1 Jan 04-0 Jun 13) Earth-Skimming Relative contribution to expected event rate: Earth Skimming: ~84% Down Going (75-90 ) ~ 14% Down Going (60-75 ) ~ % Downward-going 75 < θ < 90 deg. Downward-going 60 < θ < 75 deg. 14 17 18 E ν [ev] 19 0 Source of systematic Combined uncertainty band Simulations +4%, -3% cross section & E-loss +34%, -8% Topography +15%, 0% Total +37%, -8% 16 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

EeV Neutrino Limits Auger Collaboration, PRD 91, 09008 (015) Single flavour, 90% C.L. s -1 sr -1 ] 5 6 IceCube 013 (x 1/3) [30] Auger (this (015) work) ANITA-II 0 (x 1/3) [9] Cosmogenic ν models p, Fermi-LAT best-fit (Ahlers ') [33] p, Fermi-LAT 99% CL band [33] p, FRII & SFR (Kampert '1) [31] Fe, FRII & SFR (Kampert '1) [31] p or mixed, SFR & GRB (Kotera ') [9] Waxman-Bahcall '01 [13] - dn/de [ GeV cm E 7 8 9 17 18 E ν [ev] 19 0 1 17 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

EeV Neutrino Limits Single flavour, 90% C.L. -5 IceCube 013 (x 1/3) [30] ] sr -1-6 Auger (this (015) work) ANITA-II 0 (x 1/3) [9] Auger Collaboration, PRD 91, 09008 (015) Cosmogenic ν models p, Fermi-LAT best-fit (Ahlers ') [33] p, Fermi-LAT 99% CL band (Ahlers ') [33] p, FRII & SFR (Kampert '1) [31] - s -1 dn/de [ GeV cm E -7-8 -9 Waxman-Bahcall '01 [13] 17 18 E ν [ev] 19 0 1 Would have expected to see 1-7 GZK neutrinos (for different models), have seen none Neutrino upper limits start to constrain cosmogenic neutrino fluxes of p-sources 18 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

EeV Neutrino Limits Single flavour, 90% C.L. -5 IceCube 013 (x 1/3) [30] Cosmogenic ν models Auger Collaboration, PRD 91, 09008 (015) Auger (this (015) work) Fe, FRII & SFR (Kampert '1) [31] ] sr -1-6 ANITA-II 0 (x 1/3) [9] p or mixed, SFR & GRB (Kotera ') [9] - s -1 Waxman-Bahcall '01 [13] dn/de [ GeV cm -7-8 E -9 17 18 E ν [ev] 19 0 1 Cosmogenic Neutrino Models with mixed/heavy primaries still below present upper limits 19 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

EeV Neutrino Limits Challenge GZK J. Heinze et al., ApJ 016 preliminary exclusion limits from IceCube expected ν-fluxes if flux suppression of TA is due to GZK-effect Pure Figure 4. proton All-flavor flux of with cosmogenic GZK neutrinossuppression predicted by the 3D fit to challenged by upper limits to neutrino fluxes 0 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

Where could we get with Auger and beyond? Present data represent 3 yrs (4.5 yrs) of full SD array and run into 013 if no ν are observed, limits will go down by factor ~.5-3.5 rule out high flux models Single flavour, 90% C.L. -5 IceCube 013 (x 1/3) [30] ] sr -1 s -1 - dn/de [ GeV cm -6-7 -8 Auger (this work) ANITA-II 0 (x 1/3) [9] Cosmogenic ν models p, Fermi-LAT best-fit (Ahlers ') [33] p, Fermi-LAT 99% CL band (Ahlers ') [33] p, FRII & SFR (Kampert '1) [31] Waxman-Bahcall '01 [13] Moreover: exploit new trigger for better sensitivity at lower E -9 17 18 E ν [ev] 19 0 1 energies and use data of infill array (low exposure, however) a next generation CR-Observatory would reach down to Fe/mixed composition scenarios 1 HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017

What, if we observe a Neutrino? Energy estimate of a ν candidate: Only the energy of the ν-induced shower (Eshower) can be reconstructed ν flavour cannot be determined & Eshower depends on flavour At best a lower bound to E ν, because E ν > Eshower ν can interact anywhere in atmosphere: Eshower determination should include shower age No algorithm including age exists so far Angular reconstruction of quasi-horizontal events: Not optimised for deeply penetrating & very inclined showers (> 80 ) Angular resolution ~ 1- Identification of up-going shower would indicate tau neutrino primary Conservative statement: Auger = discovery experiment (a counter of UHE neutrinos) HE Neutrinos and UHECR - The way forward: Weizmann Institute, Jan. -15, 017