Geometry Unit 2 Notes Logic, Reasoning and Proof

Similar documents
Geometry Unit 2 Notes Logic, Reasoning and Proof

Geometry Unit 2 Notes Logic, Reasoning and Proof

Section 2-1. Chapter 2. Make Conjectures. Example 1. Reasoning and Proof. Inductive Reasoning and Conjecture

The following statements are conditional: Underline each hypothesis and circle each conclusion.

Geometry: Notes

(b) Follow-up visits: December, May, October, March. (c ) 10, 4, -2, -8,..

Chapter 2: Geometric Reasoning Review

Chapter 2. Reasoning and Proof

Chapter 2. Reasoning and Proof

Chapter 2. Reasoning and Proof

2-1 Using Inductive Reasoning to Make Conjectures

Geometry Study Guide. Name: Class: Date: Matching

Day 1 Inductive Reasoning and Conjectures

Inductive Reasoning. Courage is resistance to fear, mastery of fear, not absence of fear. Mark Twain

Reasoning and Proof Unit

Geometry. Unit 2- Reasoning and Proof. Name:

Chapter 2 Practice Test

Geometry - Chapter 2 Earn-A-Try Test

Name: Class: Date: B. The twentieth term is A. D. There is not enough information.

Study Guide and Review

Ready to Go On? Skills Intervention 2-1 Using Inductive Reasoning to Make Conjectures

Formal Geometry. Conditional Statements

2-1. Inductive Reasoning and Conjecture. Lesson 2-1. What You ll Learn. Active Vocabulary

Chapter 2: Reasoning and Proof

p, p or its negation is true, and the other false

HONORS GEOMETRY CHAPTER 2 WORKBOOK

Study Guide and Review

Using Inductive and Deductive Reasoning

Geometry - Chapter 2 Corrective 1

2.1 If Then Statements

Unit 2: Geometric Reasoning Section 1: Inductive Reasoning

Chapter 2-Reasoning and Proof

2-6 Geometric Proof. Warm Up Lesson Presentation Lesson Quiz. Holt Geometry

Chapter 2 Study Guide and Review

Ch 2 Practice. Multiple Choice

2.2 Day 1: Date: Geometry

Geometry Unit 1 Segment 3 Practice Questions

2. If a rectangle has four sides the same length, then it is a square. 3. If you do not study, then you do not earn good grades.

right angle an angle whose measure is exactly 90ᴼ

Find the next item in the pattern below. The red square moves in the counterclockwise direction. The next figure is.

Inductive Reasoning. Inductive Reasoning. Inductive Reasoning. Inductive Reasoning. Logic (with Truth Tables) If-Then Statements

Chapter 2. Worked-Out Solutions Quiz (p. 90)

GEOMETRY. 2.1 Conditional Statements

Name: Geometry. Chapter 2 Reasoning and Proof

NAME DATE PER. 1. ; 1 and ; 6 and ; 10 and 11

If two sides of a triangle are congruent, then it is an isosceles triangle.

Geometry Chapter 2 2-3: APPLY DEDUCTIVE REASONING

Ě /DZ RI 6\OORJLVP p. 60. Ě 5HIOH[LYH 3URSHUW\ p. 65 Ě conclusion, p. 49. Ě QHJDWLRQ p. 49. Ě 6\PPHWULF 3URSHUW\ p. 65 Ě conditional, p.

Chapter 5 Vocabulary:

Geometry Chapter 2 Practice Free Response Test

Unit 1: Introduction to Proof

Geo - CH2 Practice Test

Unit 2 Definitions and Proofs

NAME DATE PERIOD. Inductive Reasoning and Conjecture. Make a conjecture based on the given information. Draw a figure to illustrate your conjecture.

Geometry Final Review. Chapter 1. Name: Per: Vocab. Example Problems

Pre-AP Geometry Chapter 2 Test Review Important Vocabulary: Conditional Converse Hypothesis Conclusion Segment Addition

Answer each of the following problems. Make sure to show your work. 2. What does it mean if there is no counterexample for a conjecture?

2.1 Practice A. Name Date. In Exercises 1 and 2, copy the conditional statement. Underline the hypothesis and circle the conclusion.

G E O M E T R Y CHAPTER 2 REASONING AND PROOF. Notes & Study Guide CHAPTER 2 NOTES

Chapter 2 Test Review 1. Based on the pattern, what are the next two terms of the sequence? 8, 15, 22, 29,...

Chapter Test. Chapter Tests LM 5 4, }} MO 5 14, } LN Answers. In Exercises 4 6, use the diagram. Geometry Benchmark Tests

Conditional Statement: Statements in if-then form are called.

Chapter 2 Review. Short Answer Determine whether the biconditional statement about the diagram is true or false.

1. Based on the pattern, what are the next two terms of the sequence?,... A. C. B. D.

ray part of a line that begins at one endpoint and extends infinitely far in only one direction.

Chapter 2. Chapter 2 Section 2, pages Chapter 2 Section 3, pages

GEOMETRY CHAPTER 2: Deductive Reasoning

Geometry First Semester Exam Review

Chapters Q1 Exam Practice Test

CMA Geometry Unit 1 Introduction Week 2 Notes

Paragraph Proof, Two-Column Proof, Construction Proof, and Flow Chart Proof

The following techniques for methods of proofs are discussed in our text: - Vacuous proof - Trivial proof

LOGIC. 11 Converse, Inverse, Contrapositve. 12/13 Quiz Biconditional Statements

Conditional Statements

Test Review: Geometry L2 Period 1 and 3 Test Date: Friday November 6

Writing: Answer each question with complete sentences. 1) Explain what it means to bisect a segment. Why is it impossible to bisect a line?

2) Are all linear pairs supplementary angles? Are all supplementary angles linear pairs? Explain.

Geometry CP Review WS

GEOMETRY CHAPTER 2 REVIEW / PRACTICE TEST

Unit 1: Test 1 Chapter 1

Chapter Review #1-3. Choose the best answer.

Unit 2: Logic and Reasoning. start of unit

Conditional statement:

Foundations of Math 3 -- Proof Practice

2.1 Start Thinking. 2.1 Warm Up. 2.1 Cumulative Review Warm Up

Geometry Test Unit 2 Logic, Reasoning and Proof

Triangle Geometry. Often we can use one letter (capitalised) to name an angle.

Geometry Note Cards EXAMPLE:

the plant on day 10 of the experiment

Geometry Semester 1 REVIEW

Parallel and Perpendicular Lines

SUBAREA I MATHEMATIC REASONING AND COMMUNICATION Understand reasoning processes, including inductive and deductive logic and symbolic logic.

Chapter 2 Review - Formal Geometry

Name: 2015 Midterm Review Period: Date:

3. Understand The Laws of Detachment and Syllogism 4. Appreciate a simple Ham Sandwich.

1.4 Reasoning and Proof

DISCOVERING GEOMETRY Over 6000 years ago, geometry consisted primarily of practical rules for measuring land and for

Honors Geometry Semester Review Packet

JANE LONG ACADEMY HIGH SCHOOL MATH SUMMER PREVIEW PACKET SCHOOL YEAR. Geometry

Proofs. Joe Patten August 10, 2018

Transcription:

Geometry Unit 2 Notes Logic, Reasoning and Proof Review Vocab.: Complementary, Supplementary and Vertical angles. Syllabus Objective: 2.1 - The student will differentiate among definitions, postulates, corollaries, and theorems. Definition - a statement defining an independent/dependent relationship between two conditions, the hypothesis and conclusion. Often written in the if-then form. Can be written as a true biconditional. Postulate (axiom) is a statement (basic assumption) assumed to be true without proof. Theorem is a statement that has to be proved. Corollary is a special case of a theorem. Follows from information proven in the theorem. Syllabus Objective: 2.2 - The student will justify conjectures and solve problem using inductive reasoning. Conditional Statement A type of logical statement that has two parts, a hypothesis and a conclusion. Conditional statements are often written in if-then format. Inductive Reasoning Reasoning that uses specific examples to arrive at a logical conclusion. Conclusions are not logical certainty, but the best guess based on what has been observed. Given a pattern of numbers and assuming that it continues is an application of inductive reasoning. Ex) The postman delivers mail Monday through Thursday at 1:00 PM. We could conclude that he will deliver mail at 1:00 PM on Friday.?: What happens if he has a flat tire? Or an accident? Ex) It has been hot and sunny for 5 days straight. We might conclude that tomorrow will be hot and sunny.?: Could there be a freak cold snap? pg. 1

Ex) Find the next item in the sequence: Movie show times: 8:30 AM, 9:45 AM, 11:00 AM, 12:15 PM, 1:30 PM?: How far apart are the movies show times spaced? 1 hour and 15 minutes. Syllabus Objective: 2.3 The student will differentiate between deductive and inductive reasoning. Deductive Reasoning Reasoning that uses facts, rules, definitions, or properties to reach logical conclusions. Symbolic notation of conditional statements: p: hypothesis condition q: conclusion condition If p, then q p q p implies q implies If not q, then not p ~q ~p if and only if ~ not or negation p if and only if q p q Ex) It is stated that two angles are congruent, from the definition of congruent we can assert that their measures are equal. (This is the type of reasoning used in two-column proofs.) Law of Detachment: If p q is true and p is true, then q is true. Conditional statements do NOT imply that any individual condition exists or is true, only that there is a relationship between the two conditions. Detachment applies to a singular conditional statement and the existence (or truth) of the hypothesis condition If p q is true and p exists, then q exists. If an animal is a duck, then it is a bird. My pet is a duck. Therefore, my pet is a bird. pg. 2

Ex) If you tease your little brother/sister, then your parents will be upset with you. You start teasing your sibling, what will the outcome be? Your parents will be upset with you.?: If your parents are upset with you, does that mean you were teasing your little brother/sister? No, there are probably several reasons why your parents could be upset with you. Law of Syllogism: If the conclusion condition of statement A is the hypothesis condition of statement B, then A and B can be linked together to form a true conditional statement with the hypothesis condition of A and conclusion condition of B. Syllogism is a transitive process linking two conditional statements in order to form a third conditional statement. Like conditional statements, Syllogism does NOT imply that any condition exists or is true. Syllogism applies to two conditional statements and allows us to create a third conditional statement by linking the first two. If p q and q r, then p r. If an animal is a duck, then it is a bird. If an animal is a bird, then it has feathers. If an animal is a duck, then it has feathers. Ex) If you do your chores, then you can go out with friends this weekend. If you go out with your friends, then you will go to the movies. Therefore If you do your chores, then you will go to the movies. pg. 3

Syllabus Objective: 2.4 The student will distinguish between the hypothesis and conclusion of an implication. Hypothesis: the independent condition. Conclusion: the condition dependent upon the hypothesis. Ex) If an animal is a duck, then it is a bird. Hypothesis: an animal is a duck. Conclusion: an animal is a bird. The conclusion is dependent upon the hypothesis. The hypothesis is independent. This is analogous to the x-y relationship in functions. Syllabus Objective: 2.5 The student will write an implication as an if-then statement. Ex) The sum of the measures of two supplementary angles is 180. If the sum of the measures of two angles is 180, then they are supplementary. Ex) Two angles are complementary if the sum of their measures is 90. If the sum of the measures of two angles is 90, then they are complimentary. *Notice the placement of the word if in the second example changes the customary placement of if-then in the sentence. Syllabus Objective: 2.6 The student will analyze conditional or bi-conditional statements. Biconditional Statement - a conditional statement that is logically equivalent to its converse. A biconditional is a true conditional statement whose converse is also true. Both statements can be summarized into one statement using the phrase if and only if. Geometric definitions are biconditional statements. Ex) Perpendicular lines: Two lines are perpendicular if and only if they intersect to form a right angle. If two lines are perpendicular, then they intersect to form a right angle. pg. 4

If two lines intersect to form a right angle, then they are perpendicular lines. Two lines are perpendicular if and only if they intersect to form a right angle. Syllabus Objective: 2.7 The student will write and analyze converse, inverse, and contrapositive of a statement. Converse - a form of a conditional statement created by switching the hypothesis and conclusion. Inverse - a form of a conditional statement created by negating both the hypothesis and conclusion. Contrapositive - a form of a conditional statement created by switching AND negating the hypothesis and conclusion. Ex) Conditional Statement: If an animal is a duck, then it is a bird. (True) Converse: If an animal is a bird, then it is a duck. (False) Inverse: If an animal is NOT a duck, then it is NOT a bird. (False) Contrapositive: If an animal is NOT a bird, then it is NOT a duck. (True) Logically equivalent statements - two conditional statements which are necessarily both true (or both false.) A conditional statement and its contrapositive are logically equivalent. As is the inverse & converse. Syllabus Objective: 2.8 The student will find counterexamples to disprove mathematical statements. Counterexample An example used to show that a given statement is not always true. Ex) If n is a real number, then n is negative. Counterexample: If n = -5 (a real number), then n = 5 (a positive number). Ex) If n is a prime number, then n + 1 is not prime. Counterexample: If n = 2 (a prime number), then n + 1 = 3 (also prime). Ex) If the area of a rectangle is 20 ft 2, then its length is 10 feet and its width is 2 feet. pg. 5

Counterexample: The length could be 5 feet and the width could be 4 feet and the area would still be 20 ft 2. Syllabus Objective: 2.9 The student will write algebraic proofs. Reasoning with Algebraic Properties o Addition Property of Equality: If a = b, then a + c = b + c. o Subtraction Property of Equality: If a = b, then a - c = b - c. o Multiplication Property of Equality: If a = b, the ac = bc. a b o Division Property of Equality: If a = b and c 0, then = c c. o Reflexive Property of Equality: If a is a real number, then a = a. o Symmetric Property of Equality: If a = b, then b = a. o Transitive Property of Equality: If a = b and b = c, then a = c. o Substitution Property of Equality: If a = b, then a can be substituted in for b in any expression. It is often advantageous to show the Addition Property of Equality as follows: If a = b and c = d, then a + c = b + d. This is more typical of how the property will be used in the context of writing a proof. It is worth discussing how the Subtraction and Division Properties are special cases of the Addition and Multiplication properties where c is either negative or a reciprocal value, respectively. pg. 6

Ex) Write an algebraic proof: Given: 5 x 1 = 3 8 Prove: x = 5 Statements Reasons 1) 5x 1 = 3 1) Given 8 2) 5x 1= 24 2) Multiplication Property of Equality 3) 5x = 25 3) Addition Property of Equality 4) x = 5 4) Division Property of Equality Syllabus Objective: 2.10 The student will write a formal deductive proof. When writing geometric proofs students should be required to follow certain minimum guidelines. The T-chart should be drawn and labeled. In the upper left quadrant, the question should be stated, including the given and prove statements. In the upper right quadrant, a diagram should be sketched. The diagram should include all given information marked on the sketch. The lower left quadrant should have numbered statements and the lower right should have corresponding numbered reasons that support each statement on the left. Ex) Write a two-column proof: Prove that if DB bisects ADC, then 2 3. pg. 7

A B Given: DB bisects ADC 1 D 3 2 C Prove: 2 3 Statement Reason 1) DB bisects ADC 1) Given 2) 1 2 2) Definition of bisect 3) 1and 3are vertical angles 3) Definition of vertical angles 4) 3 1 4) Vert. s are 5) 3 2 5) Transitive Prop. of Cong. 6) 2 3 6) Symmetric Prop. of Cong. Syllabus Objective: 2.11 - The student will write proofs related to segments and angles. * Students should write formal, two-column proofs using the following postulates, properties and/or theorems in conjuncture with definitions. Postulates: Through any two points there is exactly one line. A line contains at least two points. If two lines intersect, then their intersection is one point. Through any three noncollinear points there exists exactly one plane. A plane contains at least three noncollinear points. If two points lie in a plane, then the line that contains the points lies in the plane. If two planes intersect, then their intersection is a line. pg. 8

Proving Statements About Segments: o Reflexive Property of Segment Congruence: If is a segment, then. o Symmetric Property of Segment Congruence: If then. o Transitive Property of Segment Congruence: and then. Proving Statements About Angles: o Reflexive Property of Angle Congruence: If ABC is an angle, then ABC o Symmetric Property of Angle Congruence: If ABC XYZ then XYZ ABC. o Transitive Property of Angle Congruence: If ABC XYZ and XYZ PQR then ABC PQR. ABC. Theorems: Right Angle Congruence Theorem: If two angles are right angles, then the angles are congruent. Congruent Complements Theorem: If two angles are complementary to the same angle, or congruent angles, then the angles are congruent. Congruent Supplements Theorem: If two angles are supplementary to the same angle, or congruent angles, then the angles are congruent. Linear Pair Postulate: If two angles form a linear pair, then the angles are supplementary. Vertical Angles Theorem: If two angles are vertical angles, then they are congruent. When writing a 2-Column Proof, it may be helpful to write justifications for each statement in conditional form. The conclusion condition of each justification must mirror the statement being justified. Ex) The statement, XYZ PQR must be justified by a conditional statement with a conclusion referring to congruent angles, such as, If two angles have the same measure, then they are congruent. (Definition of Congruent Angles.) Review the difference between Postulates and Theorems. It is important to note that the proofs of theorems are just like any other proof we write. pg. 9