Analysis of Radioactive Disequilibrium in Natural Decay Chains due to Processing

Similar documents
Gamma Analyst Performance Characteristics (MDAs)

IDENTIFICATION AND QUANTIFICATION OF RADIONUCLIDES IN HISTORICAL WASTE AT ANSTO

First tests of the big volume ultra low background gamma spectrometer

1 Introduction. 2 Method. Robert Metzger 1,*, Kenneth Van Riper 2, and George Lasche 3

Alpha-Energies of different sources with Multi Channel Analyzer

A coincidence method of thorium measurement

Application of prompt gamma activation analysis with neutron beams for the detection and analysis of nuclear materials in containers

Ultra-Low Background Counting and Assay Studies At SNOLAB

Low Background Counting At SNOLAB

Stefano Pirro. JRA2 Highlights Scintillating Bolometers. -Milano

1 of 5 14/10/ :21

Rivelazione di neutrini solari - Borexino Lino Miramonti 6 Giugno 2006 Gran Sasso

Basic hands-on gamma calibration for low activity environmental levels

Identification of Naturally Occurring Radioactive Material in Sand

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

arxiv: v1 [physics.ins-det] 20 Dec 2017

Environmental Applications

REFERENCE SOURCES FOR THE CALIBRATION OF THE AUTOCORRELATION SINGLE-CRYSTAL SCINTILLATION TIME SPECTROMETER

THE CHART OF NUCLIDES

The Role of Reference Materials in the Measurement of Terrestrial Radionuclides

Search for Low Energy Events with CUORE-0 and CUORE

RADON EQUILIBRIUM MEASUREMENT IN THE AIR *

Topic 3: Periodicity OBJECTIVES FOR TODAY: Fall in love with the Periodic Table, Interpret trends in atomic radii, ionic radii, ionization energies &

PHYSICAL CHARACTERIZATION BY GAMMA (Γ) ENERGY SPECTROMETRY OF DRESSED ILMENITE ORE SAND FROM SOUTHEAST MADAGASCAR (FORT DAUPHIN)

Studies of the XENON100 Electromagnetic Background

Multilayer Nuclear Track Detectors for Retrospective Radon Dosimetry

Radioactive Decay and Radioactive Series

Department of Natural Sciences Clayton State University. Physics 3650 Quiz 1

Precise Measurement of αt for the keV E3 transition in 103 Rh A Further Test of Internal Conversion Theory. Vivian Sabla N. Nica, J.C.

F. Cappella INFN - LNGS

Radiometric Dating (tap anywhere)

Z is the atomic number, the number of protons: this defines the element. Isotope: Nuclides of an element (i.e. same Z) with different N.

Chapter 18: Radioactivity And Nuclear Transformation. Presented by Mingxiong Huang, Ph.D.,

Ultra-Low Background Measurement Capabilities At SNOLAB

GERDA experiment A search for neutrinoless double beta decay. Roberto Santorelli (Physik-Institut der Universität Zürich)

Nuclear Physics Part 2A: Radioactive Decays

Measurement of radon ( 222 Rn) and thoron ( 220 Rn) concentration with a single scintillation cell

Radiological Characterization of Buildings at the Ranstad Uranium Works

Dark Matter Search Results from the Silicon Detectors of the Cryogenic Dark Matter Search Experiment

THALES Project No. 65/1205

Natural Radiation K 40

Study well-shaped germanium detectors for lowbackground

Setup for an in-situ measurement of the total light extinction of Liquid Argon in GERDA

Radon-Thoron mixed atmosphere: realization, characterization, monitoring and use for detector calibration.

Low Background NAA: A powerful tool for Physics of Rare Experiments and Environmental Sciences

Low Background Experiments and Material Assay. Tessa Johnson NSSC Summer School July 2016

Introduction to Environmental Measurement Techniques Radioactivity. Dana Pittauer 1of 48

Hrant Gulkanyan and Amur Margaryan

Unit 1 Part 2 Atomic Structure and The Periodic Table Introduction to the Periodic Table UNIT 1 ATOMIC STRUCTURE AND THE PERIODIC TABLE

Chapter 3: Stoichiometry

Chem 112, Fall 05 Exam 2a

Rn/ 226 Ra as a Background Source in the Solar Neutrino Experiments GALLEX and BOREXINO

Chemistry 19 Prep Test - Nuclear Processes

Chem 481 Lecture Material 1/23/09

Uncertainty in radon measurements with CR39 detector due to unknown deposition of Po


Chemistry 52 Chapter 11 ATOMIC STRUCTURE. The general designation for an atom is shown below:

Opportunities with collinear laser spectroscopy at DESIR:

Activity: Atomic Number and Nucleon Number Radioactivity and Radioactive Decay

Practical Approaches using TDCR Measurements and Alpha/Beta Separation

Status of CUORE and Results from CUORICINO. SERGIO DI DOMIZIO UNIVERSITÀ & INFN GENOVA On behalf of the CUORE Collaboration

arxiv:nucl-ex/ v2 21 Jul 2005

SuperNEMO Double Beta Decay Experiment. A.S. Barabash, ITEP, Moscow (on behalf of the SuperNEMO Collaboration)

X-RAY DATA BOOKLET Center for X-ray Optics and Advanced Light Source Lawrence Berkeley National Laboratory

Science 10. Unit 4:Physics. Block: Name: Book 3: radioactivty

INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA)

Radioactivity measurements and risk assessments in soil samples at south and middle of Qatar

Page 17a. Objective: We will identify different types of radioactive decay. Warm-up:

Radiological risk assessment to workers of a dicalciumphosphate industry

Modelling of decay chain transport in groundwater from uranium tailings ponds

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

ARMUG New CAM Developments. Arran Morgan MSc Physicist

Behaviour of. 222 Rn. and its daughters in liquid nitrogen. GERDA Collaboration Meeting Jagellonian University,, Kraków 2008

Determining the Need For External Radiation Monitoring at FUSRAP Projects Using Soil Characterization Data. Todd Davidson

SOURCES of RADIOACTIVITY

Chem GENERAL CHEMISTRY I MIDTERM EXAMINATION

Radionuclides in hot mineral spring waters in Jordan

Acoustics and Ionising Radiation Formulation and Strategy. 13 November 2008 Alan DuSautoy

General, Organic, and Biochemistry, 2e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

Background optimization for a new spherical gas detector for very light WIMP detection

General, Organic, and Biological Chemistry, 3e (Frost) Chapter 2 Atoms and Radioactivity. 2.1 Multiple-Choice

Radon Emanation Testing for DRIFT

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

Calibration of A Small Anode Germanium Well Detector

Detection efficiency of a BEGe detector using the Monte Carlo method and a comparison to other calibration methods. Abstract

Quality Assurance. Purity control. Polycrystalline Ingots

CANDLES Experiment Current Status and Future Plan. X. Li for the CANDLES Collaboration

Measurement of induced radioactivity in air and water for medical accelerators

HEROICA: a test facility for the characterization of BEGe detectors for the GERDA experiment

Radioactivity. Nuclear Physics. # neutrons vs# protons Where does the energy released in the nuclear 11/29/2010 A=N+Z. Nuclear Binding, Radioactivity

Gamma-Spectrum Generator

Distillation purification and radon assay of liquid xenon

LOW ENERGY SOLAR NEUTRINOS WITH BOREXINO. Lea Di Noto on behalf of the Borexino collaboration

Search for low-mass WIMPs with Spherical Detectors : NEWS-LSM and NEWS-SNO

A Liquid Argon Scintillation Veto for the GERDA Experiment

An active-shield method for the reduction of surface contamination in CUORE

Neutron Activation Cross Sections for Fusion

The 46g BGO bolometer

The Radiological Hazard of Plutonium Isotopes and Specific Plutonium Mixtures

Nucleus. Electron Cloud

Transcription:

Analysis of Radioactive Disequilibrium in Natural Decay Chains due to Processing Hans-Jürgen Lange 1, Rainer Dargel 2 1Canberra GmbH, Walter-Flex-Str. 66, 65428 Rüsselsheim Phone: +49 160 5822545, e-mail address: 12 jlange@canberra.com

Fundamental basics What do we need for accurate activity measurements of Natural Occuring Radioactive Material?

Fundamental basics Information about nuclear decays (nuclear data) nuclide library information Detector efficiency as a function of detector, geometry, matrix, Improvement of background by passive and active shielding, flushing with nitrogen Adjustment of peak fit algorithm. Interactive check! Information about processing of material prior to measurement True Coincidence effects on special energies for certain nuclides

0.72% 235 U (T 1/2 =7*10 8 a) 231 Th (T 1/2 =25,6 h) β - 231 Pa (T 1/2 =3,3*10 4 a) 227 Ac (T 1/2 =22 a) (1,2%) β - (98,8%) 223 Fr (T 1/2 =22 m) 227 Th (T 1/2 =18,7 d) Based on: U. Schkade, priv.com. Measurement of 235 U and daughters β - 223 Ra (T 1/2 =11,4 d) 219 Rn (T 1/2 =3,9 s) Gas! γ : 143,76 kev ; 10,96 % γ : 163,33 kev ; 5,08 % γ : 185,72 kev ; 57,20 % γ : 205,31 kev ; 5,01 % 223 Ra 226 Ra (144,23 kev; 3,22 %) (186,10 kev; 3,51 %) γ : 235,97 kev ; 12,3 % γ : 269,46 kev ; 13,7 % γ : 271,23 kev ; 10,8 % 228 Ac (270,25 kev; 3,46 %)

Measurement of 235 U and daughters 219 Rn (T 1/2 =3,9 s) Gas! 215 Po (T 1/2 =1,8 ms) 211 Pb (T 1/2 =36,1 m) β - 211 Bi (T 1/2 =2,15 m) (99,68%) β - (0,32%) 207 Tl (T 1/2 =4,8 m) 211 Po (T 1/2 =0,52 s) β - 207 Pb (stabil) Additionally 219 At, 215 Bi und 215 At are produced!

Measurement of 238 U and daughters 99.27% Recoil loss possible 238 U (T 1/2 =4.5*10 9 a) 234 Th (T 1/2 =24.1 d) β - 234m Pa (T 1/2 =1.2 m) β - 234 U (T 1/2 =2.5*10 5 a) 230 Th (T 1/2 =8*10 4 a) γ : 92,37 kev ; 2,42 % γ : 92,79 kev ; 2,39 % γ : 92,6 kev ; 4,81 % Th-Kα1 (93,35 kev; 5,6 %) γ : 1001,03 kev ; 0,839 % γ : 766,37 kev ; 0,316 % γ : 63,28 kev ; 4,1 % 232 Th(63,81 kev; 0,263 %)

Measurement of 238 U, 226 Ra and daughters Gas!! 226 Ra (T 1/2 =1600 a) 222 Rn (T 1/2 =3.8 d) 218 Po (T 1/2 =3.05 m) (99,98%) β - (0.02%) 214 Pb (T 1/2 =26.8 m) 218 At (T 1/2 =2 s) β - 214 Bi (T 1/2 =19.8 m) γ : 186,10 kev ; 3,51 % 235 U : (185,72 kev; 57,2 %) γ : 295,22 kev ; 18,15 % γ : 351,93 kev ; 35,10 % 211 Bi (351,06 kev; 12,91 %) γ : 609,31 kev ; 44,6 % γ : 1120,29 kev ; 14,7 % γ : 1764,49 kev ; 15,1 %

Measurement of 238 U, 226 Ra and daughters - Measurement of the 186,10 kev-linie ; 3,51 % - But interfering with 185,72 kev; 57,2 % of 235 U 1- Use of 235 U-activity from other energy lines and correct the 226 Ra-activity 2- Calculate 238 U-activity from daughter nuclides. Use of natural ration for 238 U/ 235 U=21,7 for 235 U-activity => For 2 equillibrium is essential!

Measurement of 238 U, 226 Ra and daughters - Measurement of daughters 214 Pb and 214 Bi - But 222 Rn gaseous => losses 214 Pb γ : 295,22 kev ; 18,15 % γ : 351,93 kev ; 35,10 % Interferenz 211 Bi (351,06 kev; 12,91 %) 214 Bi γ : 609,31 kev ; 44,6 % γ : 1120,29 kev ; 14,7 % γ : 1764,49 kev ; 15,1 % Gastight container for measurement and storage needed!

Measurement of 238 U, 210 Pb and daughters 214 Bi (T 1/2 =19.8 m) (0,04%) β - (0.02%) 210 Tl (T 1/2 =1.3 m) 214 Po (T 1/2 =162 µs) β - 210 Pb (T 1/2 =22a) (7.5*10-7 %) β - (100%) 206 Hg (T 1/2 =8.1 m) 210 Bi (T 1/2 =5.0 d) β - (5*10-6 %) β - 206 Tl (T 1/2 =4.3 m) 210 Po (T 1/2 =138.4 d) β - 206 Pb (stabil) γ : 46,54 kev ; 4,25 %

Measurement of 232 Th and daughters Efficiencycheck 232 Th (T 1/2 =1,4*10 10 a) 228 Ra (T 1/2 =5,7 a) β - 228 Ac (T 1/2 =6,13 h) β - 228 Th (T 1/2 =1,9 a) 224 Ra (T 1/2 =3,64 d) 220 Rn (T 1/2 =55,6 s) 216 Po (T 1/2 =0,15 s) γ : 63,81 kev ; 0,263 % 234 223 Ra Th (63,28 kev; 4,1 %) γ : 209,25 kev ; 3,89 % γ : 338,32 kev ; 11,27 % γ : 911,20 kev ; 25,80 % γ : 968,97 kev ; 15,8 % (338,28 kev; 2,79 %) γ : 240,99 kev; 4,10 % 214 Pb Gas!! (242,00 kev; 7,12 %)

Measurement of 232 Th and daughters 216 Po (T 1/2 =0,15 s) 212 Pb (T 1/2 =10,6 h) β - 212 Bi (T 1/2 =60,6 m) (36,2%) β - (63,8%) 208 Tl (T 1/2 =3.1 m) 212 Po (T 1/2 =0.3 µs) β - 208 Pb (stabil) γ : 238,63 kev ; 43,30 % γ : 300,09 kev ; 3,28 % 227 Th 231 Pa (300,00 kev; 2,70 %) (300,07 kev; 2,47 %) γ : 727,33 kev ; 6,58 % γ : 583,19 kev ; 30,4 % γ : 860,56 kev ; 4,47 % γ : 2614,53 kev ; 35,64 % (Abundance * 0.362) 228 Ac (583,41 kev; 0,111 %)

Measurement of natural decay chains Step 1: Step 2: Is there a consistent analysis with all 3 decay chains in equilibrium? Is there a constant factor between the 238 U-chain and the 235 U-chain of 21.7 => easy interpretation Nuclide library with all lines correlated to the progenitor! 235 U, 238 U or 232 Th Abundances and halflives!

Measurement of natural decay chains Step 3: What are the nuclides that caused the disequilibrium? Does the disequilibrium comes from: 1- Geochemical processes 2- Effects from processing 3- Gas losses from measurement container Step 4: How do these disequilibria influence radiation protection Examples: 1-238 U/ 234 U-activity Recoil followed by solution in water 2-214 Pb- 214 Bi different to 226 Ra due to emanation 3-210 Pb activity increased by filtering of aerosols or electrostatic effects => Exact analysis of peak areas important

Steps to improve accuracy of net peak areas Background reduction (passive/active shielding) Improved efficiency functions and check of results Peak fit algorithm

Choice of detector (Calibration factor)

Ultra-Low-Level measurements Cellar Collaboration Source: Cellar booklett and priv. Communication M. Köhler

Efficiencies for different samples 3,00E-02 2,50E-02 5,00E-02 Ta-ore 3 cm Ta-ore vs Sand Ta-ore vs Sand Efficiency 2,00E-02 4,00E-02 Reihe1 5,00E-02 1,50E-02 Reihe2 Reihe1 3,00E-02 Reihe2 1,00E-02 4,00E-02 2,00E-02 5,00E-03 3,00E-02 0,00E+00 1,00E-02 2,00E-02 0 200 400 600 800 1000 1200 1400 1600 0,00E+00 1,00E-02 0 200 400 Energy 600 [kev] 800 1000 1200 1400 1600 Efficiency E fficiency 0,00E+00 Energy [kev} 0 50 100 150 200 250 300 Energy [kev}

Fundamental basics x-ray energies of elements Element O Fe Ge Zr Nb I Ta Hg Pb kα1 [ev] kα2 [ev] kβ1 [ev] 277 6.403 6.391 7.058 9.886 9.855 10.982 15.775 15.690 17.668 16.615 16.521 18.622 28.612 28.317 32.295 57.532 56.277 65.223 70.819 68.895 80.253 74.969 72.804 84.936

X-ray fluorescence analysis Output of x-ray fluorescence analysis can be used as input for Monte-Carlo modelling of efficiency function Ta-ore vs Sand 5,00E-02 4,00E-02 Reihe1 Reihe2 Efficiency 3,00E-02 2,00E-02 1,00E-02 0,00E+00 0 50 100 150 200 250 300 Energy [kev}

Validation of efficiency function

Validation of efficiency function

Validation of peak fit results E r e i g n i s s e 80000 70000 60000 50000 40000 30000 20000 10000 0 40 50 60 70 80 90 100 Energy [kev]

Validation of peak fit results

Validation of peak fit results Energy [kev] FWHM Events Energy [kev] FWHM Events 1 1 1 2 2,2 1,6 1,4 7 2,1 0,5 0,4 1,3 0,5 0,8 0,8

Time evolution of activity Example of Ra extraction from geothermal facilities D. Degering: Private communication from SAAGAS meeting september, 2010 Batemann, H. 1910, Solution of a System of Differential Equations Occuring in the Theory of Radioactive Transformations, Proc. Cambridge Philos. Soc. 15, 423-427. Decay Engine, http://www.nucleonica.ne t/application/fulldecay.a spx Degering, D., Köhler, M., SAAGAS meeting, Sept. 2010

True Coincidence γ- γ-coincidence X-ray- γ-coincidence γ-β-coincidence More:.. Inhomogenities Input: treatment of material and sample