Effect of RGB LED Pulse Lights in Photomorphogenesis of Brassica chinensis

Similar documents
Evaluation of Total Chlorophyll Content in Microwave-Irradiated Ocimum basilicum L.

Yield Responses to Supplemental Lighting

The Relationship between SPAD Values and Leaf Blade Chlorophyll Content throughout the Rice Development Cycle

CHLOROPHYLL CONTENT QUANTIFICATION IN ACCLIMATED IN VITRO PLUM PLANTS (PRUNUS DOMESTICA, L.) Zs. Jakab-Ilyefalvi, D. Pamfil

Let light motivate your flowers

Effects of Exogenous Melatonin on Photosynthetic Characteristics. of Eggplant Seedlings under Low Temperature and Weak Light Stress

Lighting Solutions for Horticulture. The Light of Professional Knowledge

Performance of Various Salad Crops Grown under Candidate Lighting Technologies

MY BACKGROUND. Saeid since 1998

Plant Growth & Development. Growth Processes Photosynthesis. Plant Growth & Development

Effect of Moisture Stress on Key Physiological Parameters in Sunflower Genotypes

Federal State Educational Institution of Higher Professional Education M.V.Lomonosov Moscow State University

Apollo LED Grow Lights

Samsung Horticulture LEDs

Effect of the age and planting area of tomato (Solanum licopersicum l.) seedlings for late field production on the physiological behavior of plants

Common Effects of Abiotic Stress Factors on Plants

Comparative Study of Lettuce and Radish Grown Under Red and Blue Light-Emitting Diodes (LEDs) and White Fluorescent Lamps

Irrigation water salinity limits faba bean (Vicia faba L.) photosynthesis

POTASSIUM IN PLANT GROWTH AND YIELD. by Ismail Cakmak Sabanci University Istanbul, Turkey

7/31/2014 WHAT IS LIGHT? SUPPLEMENTAL LIGHTING JOHANNA OOSTERWYK DC SMITH GREENHOUSE MANAGER UW-MADISON DEPARTMENT OF HORTICULTURE

1. Climatic Factors. Light Water Temperature Wind Humidity

Title: The Importance of Daily Light Integral (DLI) for Indoor Cannabis Cultivation


? Lighting is in our culture Lighting is in our culture LED USE WHY

The scientists recorded the carbon dioxide uptake by grape leaves with three different treatments:

Research Journal of Biotechnology Vol. 9(4) April (2014) Res. J. Biotech

Plant Form and Function Study Guide

Breeding for Drought Resistance in Cacao Paul Hadley

TREES. Functions, structure, physiology

Cytokinin treatment and flower quality in Phalaenopsis orchids: Comparing N-6-benzyladenine, kinetin and 2- isopentenyl adenine

Greenhouse Supplemental Light Quality for Vegetable Nurseries

EFFECT OF META-TOPOLIN ON THE SHOOT MULTIPLICATION OF PEAR ROOTSTOCK OHF-333 Pyrus ommunis

CBMG688R. ADVANCED PLANT DEVELOPMENT AND PHYSIOLOGY II G. Deitzer Spring 2006 LECTURE

AP Biology Plant Control and Coordination

Light Quality. Light Quality. Light Quality. Light Quality. Roberto Lopez, Purdue Univ. Review of Light Concepts

Effects of Blue and Green Light on Plant Growth and Development at Low and High Photosynthetic Photon Flux

Relationship between light use efficiency and photochemical reflectance index in soybean leaves as affected by soil water content

Toward an optimal spectral quality for plant growth and development: Interactions among species and photon flux. Bruce Bugbee Utah State University

Plants. Anatomy, Physiology & Photosynthesis

Growth and development of Arabidopsis thaliana under single-wavelength red

Recommended Resources: The following resources may be useful in teaching this

Published Research in Journal: Plant and Soil - PLANT SOIL, vol. 332, no. 1, pp , 2010

THE EFFECT OF TABEX AND LACTOFOL ON SOME PHYSIOLOGICAL CHARACTERISTICS OF ORIENTAL TOBACCO

Measuring Leaf Chlorophyll Concentration from Its Color: A Way in Monitoring Environment Change to Plantations

LECTURE 03: PLANT GROWTH PARAMETERS

Temperature and light as ecological factors for plants

Discovery of compounds that keep plants fresh ~ Controlling plant pore openings for drought tolerance and delay in leaf withering ~

Journal of Tropical Plant Physiology 3 (2009): 16-24

Tissues and organs PART 2

The Wheat Plant and Its Life Cycle

Chapter 39. Plant Response. AP Biology

Understanding how vines deal with heat and water deficit

Spectrum Conversion Film for Regulation of Plant Growth

Plant Growth as a Function of LED Lights

Electromagenetic spectrum

Photoperiodic Control of Growth and Development in Nonstop Cultivar Series of Begonia x Tuberhybrida

Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Photonic multilayer structure of Begonia chloroplasts enhances photosynthetic efficiency

What factors affect the growth, development and responses of plants?

Photosynthesis - Aging Leaf Level. Environmental Plant Physiology Photosynthesis - Aging. Department of Plant and Soil Sciences

Nguyen, T. P. D. 1 *, Tran, T. T. H. and Nguyen, Q. T. 3. Introduction

Relationship between Leaf Water Potential and Photosynthesis in Rice Plants

LI-COR LI-6400XT Training Course

The Effect of Night Temperature on Cotton Reproductive Development

Effect of different day and night nutrient solution concentrations on growth, photosynthesis, and leaf NO 3

Photosynthetic parameters of Mosla hangchowensis and M. dianthera as affected by soil moisture

Plant Growth and Development

Effect of Photosynthetically Active Radiation (PAR) from LEDs on Growth and Development of Chrysanthemum morifolium Ramat. cv.

Carbon Input to Ecosystems

How drought stress and CO2 concentration influence stomatal conductance and photosynthesis? Abstract. Introduction

EFFECT OF CADMIUM TOXICITY ON THE GROWTH OF SUNFLOWER (HELIANTHUS ANNUUS (L.)

Effects of LED Light on Seed Emergence and Seedling Quality of Four Bedding Flowers

Plant Growth & Development. By: Johnny M. Jessup Agriculture Teacher/FFA Advisor

Photosynthetic Characteristics of Resistance and Susceptible Lines to High Temperature Injury in Panax ginseng Meyer

Teacher s Discussion Notes Part 1

Studies on the Bulb Development and Its Physiological Mechanisms in Lilium Oriental Hybrids

15. PHOTOPERIODISM. 1. Short day plants

Growth and development of plants influenced by: Genetic factors External environmental factors Chemicals Plants respond to chemicals that are

Effect of supplemental lighting on primary gas exchanges of Chrysanthemum morifolium Ramat cultivar White Reagan. By Xiao Ma

A Level. A Level Biology. AQA, OCR, Edexcel. Photosynthesis, Respiration Succession and Nutrient Cycle Questions. Name: Total Marks: Page 1

THE INFLUENCE OF THE MAGNETIC FLUIDS ON SOME PHYSIOLOGICAL PROCESSES IN PHASEOL US YULGARIS

EFFECTS OF WATER DEFICIT ON PHYSIOLOGY AND MORPHOLOGY OF THREE VARIETIES OF NERICA RAINFED RICE (Oryza sativa L.)

Structures and Functions of Living Organisms

КЛЮЧОВИ ДУМИ: Crysanthemum indicum L., азотно торене, многостъблено формирани растения, листен газообмен, фотосинтетични пигменти

Impact of Environmental and Stress Factors on the Photosynthetic Capabilities of Plants

CHANGES WITH AGE IN THE PHOTOSYNTHETIC AND RESPIRATORY COMPONENTS OF THE NET ASSIMILATION RATES OF SUGAR BEET AND WHEAT

Name AP Biology - Lab 06

Figure 1. Identification of UGT74E2 as an IBA glycosyltransferase. (A) Relative conversion rates of different plant hormones to their glucosylated

AP Plants II Practice test

Energy Conversions. Photosynthesis. Plants. Chloroplasts. Plant Pigments 10/13/2014. Chapter 10 Pg

Exchanging Materials in Plants

REVIEW 7: PLANT ANATOMY & PHYSIOLOGY UNIT. A. Top 10 If you learned anything from this unit, you should have learned:

; CO 2, Effect of CO 2 enrichment on the growth and photoautotrophic capability of grape ( Vitis L. ) plantlet in vitro

Avocado Tree Physiology Understanding the Basis of Productivity

THE GREENHOUSE EFFECT

Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress

AP Biology. Warm-up. Photosynthesis: Life from Light and Air. Energy needs of life. Energy needs of life. Objective: Warm-up:

The effect of different spectral LED lights on the phenotypic and physiological characteristics of lettuce (Lactuca sativa) at picking stage.

A. Stimulus Response:

INFLUENCE OF SOUND WAVE STIMULATION ON THE GROWTH OF STRAWBERRY IN SUNLIGHT GREENHOUSE

Transcription:

2014 2nd International Conference on Agriculture and Biotechnology IPCBEE vol. 79 (2014) (2014) IACSIT Press, Singapore DOI: 10.7763/IPCBEE. 2014. V79. 3 Effect of RGB LED Pulse Lights in Photomorphogenesis of Brassica chinensis Nurul Najwa Ani 1, Robiah Ahmad 1 and Che Radziah Che Mohd Zain 2 1 Razak School and Advanced Technology, Universiti Teknologi Malaysia Kuala Lumpur, Malaysia. 2 School of Biosciences & Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Malaysia. Abstract. The study aims at evaluating the effects of combination of red (R) green (G) and blue (B) LED lights on Brassica chinensis under pulse lighting treatment (1 h dark 15 minutes lights) during the day. Brassica Chinensis were grown with different photon flux density (PFD) at 100 μmol m -2 s- 1 as treatment 1 (T1) and 50 μmol m -2 s- 1 as treatment 2 (T2). The combination of RGB LEDs ratio was 4:3:3 and plants were hydroponically cultured at ±28 o C (day/night), 45% relative humidity, and 400 ppm CO 2 level inside control environment room for 25 days (5 days after sowing). Results showed that Brassica chinensis grown under RGB with pulse lighting treatment at 100 μmol m -2 s- 1 promote plant growth and photomorphogenesis. Keywords: Brassica chinensis, LED, Photomorphogenesis. 1. Introduction Light is not only a primary energy source for photosynthesis but also a vital regulator for numerous processes in plants. The lights intensity and quality are essential for plant growth, morphogenesis and other physiological responses [1]. Combination of red (R) and blue (B) LED light was an effective light source for plant growth and development, and the light spectra, intensities, and durations can easily be controlled by growers in artificial growing environments. Plants appear green because the plant reflects green light. Therefore, green light has been thought to be of no use for plant growth, particularly for photomorphogenesis and photosynthesis. Plants grow normally under sunlight or combined artificial red and blue light [2], but irradiation with green light induces stem elongation [3]. Among the various environmental factors, light is one of the most important variables affecting growth and development of many plant species such as, potato [4], and grape [5], strawberry [6]. Red and blue LEDs were used because red (650 700 nm) waveband is known to be involved in the photosynthetic and blue (450 500 nm) waveband in the photomorphogenic and phototropic responses of plants. It is well known that action spectra have action maxima in the B and R ranges [7]. The absorption of red or blue light by plant leaf pigments was about 90%, and that of green light was about 70 80% [8]. Plant physiological reactions to green light and the effects of green light on plant growth have been investigated, but there is no report of plants being cultivated under pulse lighting treatment in combination of RGB. In this study, two experiments using RGB light emitting diode (LED) with pulse lighting treatment and different light intensities were used to investigate the effect of RGB on Brassica chinensis growth and photomorphogenesis. 2. Material and Methods 2.1. Plant Materials and Lights Treatment Corresponding author. Tel.: +(603-2615 5231); fax: +(603-2615 5380). E-mail address: (robiahahmad@utm.my) 15

Seeds of Brassica chinensis were germinated in sponge cubes (3cm x 3cm) and hydroponically grown for 5 days under a light intensity 100μmol m -2 s -1 photon flux density (PFD) for 12 h under RB lights. Uniform-sized seedlings of Brassica chinensis at the 3-leaf stage were individually raised and mounted into a Styrofoam plate with fifteen holes, and placed in a container (55.5cm x 42cm x 13cm) filled with complete nutrient solution adjusted to ph 6 and an electrical conductivity of 2.5 ms cm 1. The air temperature, relative humidity, and CO 2 levels for all treatments were respectively maintained throughout the experiment at ±28 o C (day and night), 45% and 400 ppm. Plants were harvested at 30 days after transplant. Combination RGB LED with 4:3:3 array ratios was used as a light treatments with similar pulse lighting system (1 h light 15 minutes dark). The difference intensity expressed as photosynthetic PFD of 100 μmol m 2 s 1 for treatment 1 (T1) and PFD of 50 μmol m 2 s 1 for treatment 2 (T2) which was measured daily above the plant canopy and maintained by adjusting the distance of the LEDs to the plant canopy. 2.2. Plant Growth Measurement and Chlorophyll If Measurements including stem height (SH), leaf number (LN), plant fresh weight (FW), plant dry weight (DW), moisture content (MC), and leaf area (LA). SH and LN were recorded on the plants in two replicates every weeks. The LA (cm 2 ) was measured with LI-3100 leaf area meter (LICOR) of every plant. For MC value, plant tissue samples were dried in a drying oven for 48 h at 65 o C before weighing and MC was calculated as in (1). To examine chlorophyll (chl) content, leaves were weighed to 0.1g FW and added into bottle containing 20 ml solution of 80% acetone. The bottle was kept in the dark room until the leaves changed their color to white. Optical density was measured with a UV 3101PC Scanning Spectrophotometer at 663 nm for chlorophyll a and at 645 nm for chlorophyll b. Concentrations of chl a and chl b was determined from the following equations: MC = FW DW x 100 (1) FW Chl a (mg g -1 ) = [(12.7 A663) - (2.6 A645)] ml acetone / mg leaf tissue (2) Chl b (mg g -1 ) = [(22.9 A645) - (4.68 A663)] ml acetone / mg leaf tissue Total Chl = Chl a + Chl b 2.3. Gas Exchange Measurement Measurements of net photosynthesis (μmol CO 2 m -2 s -1 ), leaf stomatal conductance (mol H 2 O m -2 s -1 ), and transpiration rate (mol H 2 O m -2 s -1 ) of 2 replicate for each treatment were monitored using a Portable Photosynthesis System Li-6400XT (LICOR, USA). To assess the trade-off between CO 2 uptake and water loss, instantaneous water-use efficiency (WUE) was calculated as ratio between photosynthetic rate and transpiration rate (μmol CO 2 /μmol H 2 O). Diurnal measurements of gas exchange were taken from 0900 h to 1500 h on the fifth youngest fully expanded leaf of four plants in each replicate for T1 and T2. Statistical assessment was done on gas exchange parameters at between 1100 to 1200 h, which was presumed to be the diurnal period when photosynthetic rates would be maximal [9]. 2.4. Statistical Analysis Statistical analyses were conducted with statistical product and service solutions for Windows, version 16.0 (SPSS). All measurements were evaluated for significance by an analysis of variance (ANOVA) followed by the least significant difference (LSD) test at the p < 0.05 level [10]. 3. Result 3.1. Plant Growth, Morphology and Pigment Contents Results of the photomorphogenesis measurements of Brassica chinensis influenced by pulse light treatments shown in Table 1, and plants showed distinct growth responses for both treatments. Plants FW were shown the greatest weight when grown under T1 and followed by T2. Also for plant DW, plant that grown under T1 shown high value for T1 and plant FW and DW that grown under T1 and T2 was no 16

significant difference analyzed by SPSS. The values of LA were high in the order of plants grown under T1 and the parameters under both were not significantly different. In addition, normal appearances with stem height (SH) and leaf numbers (LN) of the Brassica chinensis plants were observed (Fig. 1). Moisture content higher was produced under T2, with the mean 30 samples of fresh plant weight of 18.54g and dry weight of 22.24 g, and moisture contents of 88.52%. Fig. 1: Effects of RGB light-emitting diodes on (A) leaf number and (B) stem height of Brassica chinensis in weekly irradiation at T1 (100 μmol m 2 s 1 ) and T2 (50 μmol m 2 s 1 ). Table 1: Influence of different intensities and photoperiod from a RGB (4:3:3) LED on LA, FW and DW, MC, chl a, chl b ant total chl of Brassica chinensis in 30 days. T Parameter FW DW (g) MC LA Chl a Chl b Total Chl (g) (%) (cm2) (mg g -1 ) (mg g -1 ) T1 26.65 a 26.91 a 87.41 a 3.83 a 2.62 a 8.57 a 3.48 a T2 18.54 a 22.24 a 88.52 a 3.25 a 1.81 b 9.69 a 2.78 a a and b shown significant different using LSD test at P < 0.05 probability level. 3.2. Chlorophyll Content Chl a contents of Brassica chinensis leaves for both treatments showed significant difference while chl b and total chl showed no significant difference at p > 0.05 analayzed by SPSS. However, the higher chl a was under T1, chl b under T2 and for total chl under T1 (Table 1). 3.3. Gas Exchange The diurnal mean leaf photosynthesis rates of Brassica chinensis under RGB (4:3:3) LED in pulse lighting treatment are shown in Fig. 2. Plants grown under T1 gave higher mean value in weekly at 1.203, 2.55, 5.37, 6.11 µmol CO 2 m -2 s -1. The diurnal mean leaf transpiration rate of Brassica chinensis under RGB (4:3:3) LED in pulse light treatment is shown in Fig. 2. The data as shown indicate that T1 depicted higher transpiration rate when compared to counterparts within the time frame of the study. The diurnal mean leaf stomatal conductance of Brassica chinensis under different treatments are depicted in Fig 2. All plants T1 conditions gave higher than those in T2, with values at 0.24, 0.20, 0.09 and 0.11 mol H 2 O m -2 s -1 by weekly. The diurnal mean leaf water use efficiency (WUE) of Brassica chinensis under various levels of intensity are shown in Fig. 2. The T2 plants recorded higher WUE values than T1 plants thus implying that intensity 17

influenced the WUE of plants substantially. The result from the comparisons of treatment means for 30 days showed that that there were significant (p < 0.05) differences among the treatments. Fig. 2: Effects of RGB light-emitting diodes on Brassica chinensis leaf photosynthesis, transpiration, stomata conductance and water use efficiency (WUE) given weekly irradiation at T1 (100 μmol m 2 s 1 ) and T2 (50 μmol m 2 s 1 ). 4. Discussion The combination of RGB with pulse lighting treatment promotes growth in Brassica chinensis. The PFD of intensity was at 100 μmol m 2 s 1 and also known as a T1and 50 μmol m 2 s 1 for T2. The experiment ran for a total of 30 days. The treatment started on the 5th day, after the sowing. The average day temperature and relative humidity values in the research lab were 28.0± C and 45% respectively, during the experimental period. During the study, plant physical measurement was recorded once a week until end of the experimental Brassica chinensis growth under both treatments was also recorded. After one week transplants, all 100% plants survived for both treatments. After two weeks, 8 plants under T1 were dead while 3 plants were dead under T2. This indicates that plant can survive under 50 μmol m 2 s 1 since the PFD was low in 28 o C temperature condition. Three weeks after transplant, the number of plant dead increased under T1 which is 9 plants and 7 plants were dead under T2. At the final week, no plants were dead for both plants until the harvesting time. For the T1, the mean values of FW, DW and MC were high due to low intensity compared to T2. This situation must be related to the environment. The temperature of environment at 28 o C was not suitable and high for Brassica Chinensis growth and development. The relative humidity at 45% was also very dry for plant development and morphology. Physical measurement for LN and SH Brassica chinensis increasing week by week but there a high value T2 compared to T1 Due to the environment condition, chl b was analyzed by SPSS and there area shown no significant impact but the value of Chl b was respectively high compared to chl b at T2. Chl b content was quantitatively high but does not influence qualitatively the action spectrum of chlorophyll formation. This could be attributed to the fact that the relative stimulatory effect of blue light is stronger for Chl b than for Chl a. Plant gas exchange that contribute to leaf photosynthesis rate, transpiration rate and stomata conductance were higher under T1 compared to T2. This result showed that dry humidity and high temperature did not disturb the activity even though they were grown under 100 μmol m 2 s 1. 5. Conclusion 18

RGB in different intensity showed significant impact to Brassica chinensis growth and development. However, environmental condition such as temperature and humidity will affect the plant growth but for leaf gas exchange, it was still active as usual for normal growth. For future work, RGB ratio will be changed and used as a light treatment under difference intensity with variable environmental parameters to study Brassica chinensis plant growth and photomorhogenesis. 6. Acknowlegment The authors thank Ministry of Higher Education (MOHE) Malaysia and Universiti Teknologi Malaysia (UTM) under grants Fundamental Research Grant Scheme Vote 4F144 and Research University Grant Scheme (RUGS) Vote 04H55 for the financial support provided throughout the course of this research. 7. References [1] Fukuda, N., Fujitan, M., Ohta, Y., Sase, S., Nishimura, S., Ezura, H., 2008. Directional blue light irradiation triggers epidermal cell elongation of abaxial side resulting in inhibition of leaf epinasty in geranium under red light condition. J. HortScience 115, 176 182. [2] Folta, K.M., 2004. Green light stimulates early stem elongation, antagonizing light mediated growth inhibition. Plant Physiol. 135, 1407 1416. [3] Jao RC, Fang W (2004) Effects of frequency and duty ratio on the growth of potato plantlets in vitro using lightemitting diodes. HortScience 39:375 379. [4] Puspa RP, Ikuo K, Ryosuke M (2008) Effect of red-and blue-light emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Org Cult 92:147 153. [5] Nhut DT, Takamura T, Watanabe H, Okamoto K, Tanaka M (2003) Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Org Cult 73:43 52. [6] Kasajima, S., Inoue, N., Mahmud, R., Kato, M., 2008. Developmental responses of wheat cv. Norin 61 to fluence rate of green light. Plant Prod. Sci. 11, 76 81. [7] Terashima, I., Fujita, T., Inoue, T., Chow, W.S., Oguchi, R., 2009. Green light drives leaf photosynthesis more efficiently than red light in strong white light: revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 50, 684 697. [8] Arnon, Daniel I. 1949. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiology. Volume 24, pp. 1-15. [9] DiCristina, K. and M. Germino. (2006). Correlation of neighbourhood relationships, carbon assimilation, and water status of sage brush seedlings establishing after fire. Western North American Naturalist. 66(4): 441-449. [10] Kuan-Hung Lin, Meng-Yuan Huang, Wen-Dar Huangc, Ming-Huang Hsuc, Zhi-Wei Yangd, Chi-Ming Yang.( 2013). The effects of red, blue, and white light-emitting diodes on the growth,development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia orticulturae 150 : 86 91. 19