Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0

Similar documents
EKV MOS Transistor Modelling & RF Application

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

Compact Modeling of Ultra Deep Submicron CMOS Devices

MIXDES 2001 Zakopane, POLAND June 2001

MOS Transistor Properties Review

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

MOSFET: Introduction

The Devices: MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Advanced Compact Models for MOSFETs

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

ECE 342 Electronic Circuits. 3. MOS Transistors

Integrated Circuits & Systems

Microelectronics Part 1: Main CMOS circuits design rules

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

Lecture 13 MOSFET as an amplifier with an introduction to MOSFET small-signal model and small-signal schematics. Lena Peterson

FIELD-EFFECT TRANSISTORS

ECE-305: Spring 2016 MOSFET IV

ECE 546 Lecture 10 MOS Transistors

Device Models (PN Diode, MOSFET )

Sadayuki Yoshitomi. Semiconductor Company 2007/01/25

EE5311- Digital IC Design

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

Important! EE141- Fall 2002 Lecture 5. CMOS Inverter MOS Transistor Model

Microelectronics Main CMOS design rules & basic circuits

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Investigation of the Thermal Noise of MOS Transistors under Analog and RF Operating Conditions

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

Device Models (PN Diode, MOSFET )

MOS Transistor I-V Characteristics and Parasitics

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

1/13/12 V DS. I d V GS. C ox ( = f (V GS ,V DS ,V SB = I D. + i d + I ΔV + I ΔV BS V BS. 19 January 2012

Lecture 11: MOS Transistor

Practice 3: Semiconductors

ECE 497 JS Lecture - 12 Device Technologies

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

EE105 - Fall 2006 Microelectronic Devices and Circuits

The PSP compact MOSFET model An update

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Lecture 12: MOSFET Devices

MOS Transistor Theory

The Future of CMOS. David Pulfrey. CHRONOLOGY of the FET. Lecture Lilienfeld s patent (BG FET) 1965 Commercialization (Fairchild)

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

Lecture 12: MOS Capacitors, transistors. Context

MOS Transistor Theory

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 11: MOSFET Modeling

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 5: CMOS Transistor Theory

Choice of V t and Gate Doping Type

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

ECE-305: Fall 2017 MOS Capacitors and Transistors

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOSFET Capacitance Model

The HV-EKV MOSFET Model

Introduction and Background

The Critical Role of Quantum Capacitance in Compact Modeling of Nano-Scaled and Nanoelectronic Devices

Section 12: Intro to Devices

Electrical Characteristics of MOS Devices

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

EKV Modelling of MOS Varactors and LC Tank Oscillator Design

The Intrinsic Silicon

Lecture 04 Review of MOSFET

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

Semiconductor Devices. C. Hu: Modern Semiconductor Devices for Integrated Circuits Chapter 5

Section 12: Intro to Devices

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

MOSFET Physics: The Long Channel Approximation

ECE315 / ECE515 Lecture-2 Date:

Comparative Analysis of Practical Threshold Voltage Extraction Techniques for CMOS. Yu-Hsing Cheng ON Semiconductor October 15, 2018

Lecture 10 MOSFET (III) MOSFET Equivalent Circuit Models

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

Using MOS Models. C.K. Ken Yang UCLA Courtesy of MAH EE 215B

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

Physics-based compact model for ultimate FinFETs

A Multi-Gate CMOS Compact Model BSIMMG

EE115C Winter 2017 Digital Electronic Circuits. Lecture 2: MOS Transistor: IV Model

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

N Channel MOSFET level 3

! CMOS Process Enhancements. ! Semiconductor Physics. " Band gaps. " Field Effects. ! MOS Physics. " Cut-off. " Depletion.

DC and Transient Responses (i.e. delay) (some comments on power too!)

Long Channel MOS Transistors

Lecture 30 The Short Metal Oxide Semiconductor Field Effect Transistor. November 15, 2002

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOSFET N-Type, P-Type. Semiconductor Physics.

Transcription:

MOS Models & Parameter Extraction Workgroup Arbeitskreis MOS Modelle & Parameterextraktion XFAB, Erfurt, Germany, October 2, 2002 Analysis of Transconductances in Deep Submicron CMOS with EKV 3.0 Matthias Bucher, Ph.D. mbucher@tee.gr National Technical University of Athens (NTUA), Athens, Greece Smart Silicon Systems S.A., Lausanne, Switzerland Acknowledgements Dimitris Kazazis David Binkley Daniel Foty François Krummenacher M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 2

Outline Introduction EKV MOSFET model formulation Analysis of transconductances vs. level of inversion and channel length Measurement of 0.25um CMOS Comparison with EKV 3.0 MOSFET model Conclusions M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 3 CMOS Technology Evolution Rapid scaling of CMOS technology Increasing complexity of CMOS technology (mostly driven by digital) Analog/mixed signal, wireless RF, LV-LP battery operated equipment requires novel circuit solutions. Moderate/weak inversion increasingly important. M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 4

Design-Gap in Analog Gap in analog design productivity is especially severe Lack of understanding of MOSFET physics. Lack of adequate tools, methods and models for design. A new method is needed for: Rapid evaluation of design trade-offs: gain, bandwidth, linearity, matching, noise, chip area. Hand-calculation and full circuit simulation. Transconductance method based on EKV MOS transistor model: Analysis vs. level of inversion & channel length. Measurement vs. level of inversion & channel length. EKV 3.0 MOSFET model for deep submicron CMOS. M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 5 MOS Transistor Basic Definitions B V S V G V D S V S G V G L D V D I D p + n + n + poly t ox n + x L eff p substrate (N sub ) Source-, gate-, drain- and substrate transconductances: y g ms ( ID ) g mg VS V V G, V G D g mb = g ms g mg g md I D I g md D V D V S, V D V G, V S M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 6

Normalization of Drain Current and Voltages ID [A].0E-02.0E-03.0E-04.0E-05.0E-06.0E-07.0E-08.0E-09.0E-0.0E- V S =0V.0E-2 V D =.5V WEAK INV. MOD. INV. STRONG INV. V S =0.8V -0.2 0 0.2 0.4 0.6 0.8.2.4 VG [V] Specific Current: I SPEC 2 W I Spec = 2nU T µc ox ---- L Inversion Coefficient: = I D I Spec 0 0. 0 0. Strong Inversion Moderate Inversion Weak Inversion Inversion Coefficient () is meaningful for operation in saturation... covering all the range from weak to strong inversion Normalization of voltages by U T = kt q: υ G( S, D) V. = G( S, D) U T M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 7 Inversion Charge Linearization Inversion Charge Linearization: Pinch-off Surface Potential: Pinch-off Voltage: dq i ---------- n dψ C ox S Ψ SP Ψ S Qi = 0 V P Ψ SP φ Consider charge and voltage balance in the MOS structure: Q i Ψ ---------- γ U S Ψ C ox T ------ S 2φ F V + exp ------------------------------------ ch Ψ = ------ S Q V G V FB Ψ S γ Ψ i = + + S ---------- C ox U T Q i Ψ S V G is almost linear w.r.t. surface potential at fixed. Linearization is essential to analytic charge-sheet model. U T U T M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 8

Pinch-off Voltage, Slope Factor Slope Factor: dv n G = + ----------------------- γ dv P 2 φ + V P Pinch-off Voltage: V V G V TO P ---------------------- n V TO = V FB + φ+ γ φ γ = 2qε si N ---------------------------- sub C ox ε C ox ox = ------- T ox N sub n i φ 2φ F + m U T = U T 2 ln ---------- + m m 2 3 V P, n account for the substrate effect T ox, N sub, V FB, same parameters as in surface potential model (long-ch.) V P, n also include short-channel effects (DIBL, charge-sharing, RSCE...) M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 9 Charge Sheet Model Consider drift and diffusion current transport, use linearization: I D dx µw[ Q i dψ S + U T dq i ] µw Q i = = ------------- + U nc T dq i ox Integrate from source to drain: 2 I D = 2nU T µc W ox ---- ( i L f i r ) = I Spec ( i f i r ) 2 i fr q fr with current-charge relationships: = + q fr or, q fr = 4 + i fr Consider channel conductance: di D = µ W ---- ( L Q i ) dv ch... in normalized form: di fr d q υ fr SD = = -- + i 4 fr = i fr Integration yields voltage-charge relationship: υ P υ SD = 2q fr + q fr ln Gi fr M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 0

Drain Current in Saturation Drain Current: I D = I Spec ( i f i r ) Drain Current (saturation): I D I Spec i f i f >> i r Symmetric forward/reverse normalized current: i fr = F[ υ P υ SD ] i = -- [ υ fr 4 P υ SD ] 2 SI: υ P υ ln + exp ------------------------ SD WI: i fr = exp( υ P υ SD ) 2 2 Example: asymptotic drain current expressions in saturation: SI: WI: nβ I D = ------ [ V 2 P V S ] 2 2 V I D 2nβU P V = exp S T ------------------ U T where: β = µc W ox ---- L M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 Transconductance-to-Current Ratio WEAK INV. MOD. INV. G = ----------------------------- -- + -- + 2 4 STRONG INV. G(): normalized transconductance-to-current ratio: compared to exact surface potential model compared to measurements (4 different CMOS technologies) G() vs. is universal, over bias conditions (saturation), temperature, technology. M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 2

Transconductances Analysis Fundamental relationships: g g ms g md n mg = -------------------- g n mb = ----------- g n mg Transconductance-to-current ratios: g G mx U T x ------------------- I D st -order expressions of transconductance-to-current ratios: G G G --------------- G n S G G n G ----------- G n G D G V P + V D U ------ T n n V D (weak-moderate inversion) st -order expressions are valid mostly in moderate & weak inversion. G D is also directly dependent on G() and short-channel effects in V P, n M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 3 Gate Transconductance -- Bsim3v3 Model 0.8 0.7 0.6 BSIM3v3 gmg * UT / ID 0.5 0.4 0.3 0.2 measured 0. 0 E-06 E-05 0.000 0.00 0.0 0. 0 00 000 g m *U T /I D vs. I D /I spec (log): BSIM3v3 model cannot fit a large range in moderate/weak inversion (parameter extraction dependent; but the problem is structural). measured at V G = 0... V DD, V S =0, V D =V G (saturation). M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 4

Gate Transconductance -- EKV 3.0 0.8 0.7 /n 0.6 EKV 3.0 gmg * UT / ID 0.5 0.4 0.3 G()/n 0.2 L=0.28um 0. 0 E-06 0.0000 0.000 0.00 0.0 0. 0 00 000 EKV 3.0 fit from weak to strong inversion, for long & short channel devices (NMOS) Asymptote in weak inversion: /n Weak inversion slope (S~=ln0.n.U T ) is dependent on n(v G ). M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 5 Source Transconductance -- EKV 3.0 0.9 0.8 ~ EKV 3.0 gms * UT / ID 0.7 0.6 0.5 0.4 0.3 0.2 L=0.28um G() 0. 0 E-06 0.0000 0.000 0.00 0.0 0. 0 00 000 g ms *U T /I D vs. is universal (in saturation, independent of gate voltage, temperature, channel length except very short channel) Asymptote in weak inversion: ~ g mg ~= g ms /n (saturation) M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 6

Substrate Transconductance -- EKV 3.0 gmb * UT / ID 0.4 0.3 0.2 0. L=0.28um (n-)/n EKV 3.0 G()*(n-)/n 0 E-06 0.0000 0.000 0.00 0.0 0. 0 00 000 g mb *U T /I D vs. is dependent on substrate effect Asymptote in weak inversion: (n-)/n g mb ~= g ms *(n-)/n M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 7 Drain Transconductance -- EKV 3.0 0. 0.0 gmd * UT / ID 0.00 EKV 3.0 0.000 L=0.28um 0.0000 E-06 0.0000 0.000 0.00 0.0 0. 0 00 000 g md *U T /I D = U T /V A where V A = I D /g md is Early voltage. G D () = g md *U T /I D shows very strong dependence on L! st-order G D tends to underestimate the measured g md *U T /I D M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 8

Drain Transconductance -- EKV 3.0 0. NMOS 0. PMOS gmd * UT / ID 0.0 0.00 0.000 0.28um 0.36um 0.5um um 3um gmd * UT / ID 0.0 0.00 0.000 0.28um 0.5um um 2um 0.0000 E-06 E-05 E-04 0.00 0.0 0. 0 00 000 0.0000 E-05 0.000 0.00 0.0 0. 0 00 000 g md *U T /I D reveals different scaling for NMOS and PMOS WI: dominated by DIBL, Charge-sharing SI: dominated by Vel. Sat., CLM, self-heating EKV 3.0 shows excellent g md *U T /I D modeling with, L M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 9 DC Self-Gain -- EKV 3.0 gmg / gmd 0000 000 00 3um um 0.5um 0.36um 0.28um NMOS gmg / gmd 0000 000 00 2um um 0.5um 0.28um PMOS 0 E-06 E-05 0.000 0.00 0.0 0. 0 00 000 0 E-05 E-04 0.00 0.0 0. 0 00 000 Intrinsic gain g mg / g md is highest in moderate (!) inversion, long L g mg / g md is low-frequency gain in a common-source amplifier stage analog design can profit from high gain in MI, non-minimum L. EKV 3.0 shows excellent scaling. M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 20

Conclusions EKV MOS transistor model is a physics based, design-oriented model for deep submicron CMOS: combines surface-potential model & inversion charge linearization consistent normalization, symmetry provides ideal framework for analysis of MOS transistor characteristics Source, Gate, Substrate and Drain Transconductances have been measured in 0.25um CMOS and analyzed with EKV model: correctly model all transconductances vs. level of inversion () and channel lengths is not trivial transconductance method provides useful information for advanced analog design, model parameter extraction & benchmarking method is applicable over many CMOS generations New EKV 3.0 model shows excellent abilities for transconductance-tocurrent ratios modeling at all levels of inversion and channel lengths. M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 2 Contact & Reference Matthias Bucher, Ph.D. Smart Silicon Systems S.A. Graviere 6, 007 Lausanne, Switzerland http://www.smartsilicon.ch/ mb@smartsilicon.ch National Technical University Athens (NTUA) Zographou, 55 73 Athens, Greece http://www.elab.ntua.gr/ mbucher@tee.gr EKV 2.6 website (Wladek Grabinski): http://legwww.epfl.ch/ekv/ Main Reference: M. Bucher, D. Kazazis, F.Krummenacher, D. Binkley, D. Foty, Y.Papananos, Analysis of Transconductances at All Levels of Inversion in Deep Submicron CMOS, Proc. 9th IEEE Conf. on Electronics, Circuits and Systems (ECS 2002), Vol. III, pp. 83-86, Dubrovnik, Croatia, September 2002. M. BUCHER 0/2002 MOS-WORKGROUP MEETING, XFAB, ERFURT, GERMANY, OCTOBER 2, 2002 22