VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING

Similar documents
VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING

Discrete Systems. Step response and pole locations. Mark Cannon. Hilary Term Lecture


EE402 - Discrete Time Systems Spring Lecture 10

EECS C128/ ME C134 Final Thu. May 14, pm. Closed book. One page, 2 sides of formula sheets. No calculators.

Ingegneria dell Automazione - Sistemi in Tempo Reale p.1/28

Digital Control Systems

Module 6: Deadbeat Response Design Lecture Note 1

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems

1 x(k +1)=(Φ LH) x(k) = T 1 x 2 (k) x1 (0) 1 T x 2(0) T x 1 (0) x 2 (0) x(1) = x(2) = x(3) =

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

Pithy P o i n t s Picked I ' p and Patljr Put By Our P e r i p a tetic Pencil Pusher VOLUME X X X X. Lee Hi^h School Here Friday Ni^ht

i r-s THE MEMPHIS, TENN., SATURDAY. DEGfMBER

Solutions to Assignment 4

EE480.3 Digital Control Systems. Part 7. Controller Design I. - Pole Assignment Method - State Estimation

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

EE C128 / ME C134 Fall 2014 HW 6.2 Solutions. HW 6.2 Solutions

Digital Control & Digital Filters. Lectures 13 & 14

A. H. Hall, 33, 35 &37, Lendoi

Methods for analysis and control of. Lecture 6: Introduction to digital control

Root Locus Methods. The root locus procedure

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

26 Feedback Example: The Inverted Pendulum

Time Response Analysis (Part II)

Lecture 11. Frequency Response in Discrete Time Control Systems

If you need more room, use the backs of the pages and indicate that you have done so.

R10. IV B.Tech II Semester Regular Examinations, April/May DIGITAL CONTROL SYSTEMS JNTUK

Automatique. A. Hably 1. Commande d un robot mobile. Automatique. A.Hably. Digital implementation

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Mechanical Engineering Dynamics and Control II Fall K(s +1)(s +2) G(s) =.

Modes and Roots ... mx + bx + kx = 0. (2)

Root Locus U R K. Root Locus: Find the roots of the closed-loop system for 0 < k < infinity

Dynamic Compensation using root locus method

EL 625 Lecture 11. Frequency-domain analysis of discrete-time systems

STABILITY ANALYSIS TECHNIQUES

Appendix I Discrete-Data Control Systems

Chapter 2 z-transform. X(z) = Z[x(t)] = Z[x(kT)] = Z[x(k)] x(kt)z k = x(kt)z k = x(k)z k. X(z)z k 1 dz 2πj c = 1

Chapter 7. Digital Control Systems

Root Locus Techniques

Need for transformation?

(a) Find the transfer function of the amplifier. Ans.: G(s) =

LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers

Root Locus Design Example #3

DESIGN USING TRANSFORMATION TECHNIQUE CLASSICAL METHOD

Automatic Control (MSc in Mechanical Engineering) Lecturer: Andrea Zanchettin Date: Student ID number... Signature...

EE480.3 Digital Control Systems. Part 2. z-transform

SAMPLE EXAMINATION PAPER (with numerical answers)

Problem Set 2: Solution Due on Wed. 25th Sept. Fall 2013

Control Systems. University Questions

Lecture Note #6 (Chap.10)

Neatest and Promptest Manner. E d i t u r ami rul)lihher. FOIt THE CIIILDIIES'. Trifles.

The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain

E S T A B L IS H E D. n AT Tnn G.D.O. r.w.-bal'eu. e d n e s d a y. II GRANVILLE HOUSE. GATJDICK ROAD. MEADS. EASTBOUENk

EE 380 EXAM II 3 November 2011 Last Name (Print): First Name (Print): ID number (Last 4 digits): Section: DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO

LOWELL WEEKI.Y JOURINAL

Systems Analysis and Control

10ES-43 CONTROL SYSTEMS ( ECE A B&C Section) % of Portions covered Reference Cumulative Chapter. Topic to be covered. Part A

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

DIGITAL CONTROLLER DESIGN

EE451/551: Digital Control. Final Exam Review Fall 2013

23 Mapping Continuous-Time Filters to Discrete-Time Filters

Signal sampling techniques for data acquisition in process control Laan, Marten Derk van der

DIGITAL SIGNAL PROCESSING IV

Theory of Linear Systems Exercises. Luigi Palopoli and Daniele Fontanelli

PARTIAL DERIVATIVES AND THE MULTIVARIABLE CHAIN RULE

Lecture 04: Discrete Frequency Domain Analysis (z-transform)

C(s) R(s) 1 C(s) C(s) C(s) = s - T. Ts + 1 = 1 s - 1. s + (1 T) Taking the inverse Laplace transform of Equation (5 2), we obtain

Discrete-Time Signals and Systems. The z-transform and Its Application. The Direct z-transform. Region of Convergence. Reference: Sections

Rational Implementation of Distributed Delay Using Extended Bilinear Transformations

Problems -X-O («) s-plane. s-plane *~8 -X -5. id) X s-plane. s-plane. -* Xtg) FIGURE P8.1. j-plane. JO) k JO)

Z-Transform. x (n) Sampler

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

Governor Green Triumphs Over Mudslinging

MAS107 Control Theory Exam Solutions 2008

Performance of Feedback Control Systems

Systems Analysis and Control

GATE EE Topic wise Questions SIGNALS & SYSTEMS

Engraving Machine Example

DIGITAL CONTROL OF POWER CONVERTERS. 2 Digital controller design

CONTROL OF DIGITAL SYSTEMS

1 Steady State Error (30 pts)

Lecture 2 OKAN UNIVERSITY FACULTY OF ENGINEERING AND ARCHITECTURE

STABILITY ANALYSIS. Asystemmaybe stable, neutrallyormarginallystable, or unstable. This can be illustrated using cones: Stable Neutral Unstable

It is common to think and write in time domain. creating the mathematical description of the. Continuous systems- using Laplace or s-

Digital Control System Models. M. Sami Fadali Professor of Electrical Engineering University of Nevada

e st f (t) dt = e st tf(t) dt = L {t f(t)} s

Controls Problems for Qualifying Exam - Spring 2014

Introduction to Digital Control. Week Date Lecture Title

EE 3CL4: Introduction to Control Systems Lab 4: Lead Compensation

Recursive, Infinite Impulse Response (IIR) Digital Filters:

8. z-domain Analysis of Discrete-Time Signals and Systems

EE C128 / ME C134 Final Exam Fall 2014

This examination consists of 10 pages. Please check that you have a complete copy. Time: 2.5 hrs INSTRUCTIONS

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

FEEDBACK CONTROL SYSTEMS

CHAPTER 7 : BODE PLOTS AND GAIN ADJUSTMENTS COMPENSATION

Why do we need a model?

Professor Fearing EE C128 / ME C134 Problem Set 2 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Meeting Design Specs using Root Locus

MA FINAL EXAM Form B December 13, 2016

Transcription:

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING DEPARTMENT: PROCESS CONTROL AND COMPUTER SYSTEMS BACCALAUREUS TECHNOLOGIAE: ENGINEERING ELECTRICAL SUBJECT : DIGITAL CONTROL SYSTEMS IV EIDBS4A ASSESSMENT : UNIT 1 FIRST ASSESSMENT DATE : 24 AUGUST 2017 DURATION : 10H00 11H30 EXAMINER : R FITCHAT MODERATOR : L COETSEE REQUIREMENTS: Pocket calculators may be used INSTRUCTIONS: 1. Neat work is required 2. Number your answers clearly and correctly Full marks = 50 Total = 50 QUESTION PAPER CONSISTS OF: 1 typed page DO NOT TURN THE PAGE BEFORE PERMISSION IS GRANTED

Digital Control Systems IV EIDBS4A Unit 1 First Assessment 24 August 2017 Page 1 Question 1 Find the z transform X(z), of the following time functions x(k): a) x(k) = k(k + 1) u(k) (3) b) x(k) = (-1) k u(k) (2) Question 2 The z transform X(z) of a function x(k), is given by: X(z) = z(0.1065z 0.0902) (z 1)(z 2 1.5z 0.6967) a) Determine an expression for x(k), by finding the inverse z transform of X(z). (7) b) Use the expression obtained in Question 2 a) for x(k), to calculate x(7). (3) Question 3 Determine the pulse z transform, X(z), of the following functions X(s). Assume that the sampling period is 0.5 sec. (T = 0.5). a) X(s) = (s 4) (s + 2)(s 5) (3) b) X(s) = 1 s (s 2 1) Question 4 Solve for x(k) from the following difference equation, using z transform methods: x(k + 2) + 0.25x(k) = 1 for k 0, and with x(0) = 0 and x(1) = 0. (10) Question 5 a) Find the transfer function, C(z)/R(z), for the system in Figure 1, if the sampling period is 0.1 second (T = 0.1). (15) r(t) T = 0.1 ZOH s(s 5 2) b) Estimate the overshoot D, of the output c(t), if a step signal r(t) = u(t). is applied to the input of the digital control system in Figure 1. (3) c(t) (4) Figure 1 ---ooo000ooo--- Total: 50 Appendix: z transforms X(s) x(t) x(kt) X(z) X(s) x(t) x(kt) X(z) 1 (t) (kt) 1 e -st X(s) x(t-t) x[(k-1)t] z -1 X(z) 1/s 1 1 z/(z-1) x[(k-2)t] z -2 X(z) 1/s 2 t kt Tz/(z-1) 2 x[(k+1)t] zx(z)-zx(0) 2/s 3 t 2 (kt) 2 T 2 z(z+1)/(z-1) 3 x[(k+2)t] z 2 X(z)-z 2 x(0)-zx(1) 1/(s+a) e -at e -akt z/(z-e -at ) a k z/(z-a) 1/(s+a) 2 te -at kte -akt Tze -at /(z-e -at ) 2 ka k az/(z-a) 2 a/s(s+a) 1-e -at 1-e -akt z(1-e -at )/(z-1)(z-e -at ) X(s+a) e -at x(t) e -akt x(kt) X(ze at ) (sa)2 sa (sa)2 e -at sint e -akt sinkt e -at cost e -akt coskt ze -at sin T z 2 -(2e -at cost)ze - 2ab k cos(k+) 2aT z 2 -ze -at cost z 2 -(2e -at cost)ze -2aT 1-e-sT s za za z-b z-b X(s) (1-z -1 X(s) )Z s

Faculty: Department: Diploma: Subject: Internal code: VAAL UNIVERSITY OF TECHNOLOGY Engineering Cover Sheet for Memorandum (Unit 1 First Assessment 24 August 2017) Process Control and Computer Systems Baccalaureus Technologiae: Engineering: Electrical Digital Control Systems IV EIDBS4A Nine digit code: 080821206 Hours: Examiner: Moderator: 1½ R Fitchat L Coetsee Total Marks: 50 Full marks: 50 Signature of Examiner: Date: Signature of Moderator: Date:

Digitale Beheerstelsels IV EIDBS4A Eenheid 1 Eerste Evaluasie 24 Augustus 2017 Memorandum Bladsy 1 1. a) x(k) = k(k+1) = k 2 +k X(z) = Z{k 2 }+Z{k} = [z(z+1)/(z 1) 3 ] + z/(z 1) 2 {= 2z 2 (z 1) 3 } (3) [5] b) x(k) = ( 1) k X(z) = z/[z ( 1)] {using a k z/(z-a)} X(z) = z/(z+1) (2) 2. a) X(z)/z = (0.1065z + 0.0902)/(z 1)(z 2 1.5z+0.6967) (z 2 1.5z+0.6967=0z=0.8347±0.45436) = (0.1065z + 0.0902)/(z 1)(z 0.83470.4543 r )(z 0.8347 0.4543 r ) [2] =1/(z 1)+0.5371212.76823/(z 0.83470.4543)+0.537121 2.76823/(z 0.8347 0.4543) [3] X(z)=z/(z 1)+(0.537122.76823)z/(z 0.83470.4543)+(0.537121 2.76823)z/(z 0.8347 0.4543) x(k) = u(k) + 20.537121(0.8347 k )cos(0.4543k + 2.76823)u(k) = 1 + 1.074242(0.8347 k )cos(0.4543k + 2.76823) k 0 [2] (7) [10] [7] [10] [18] b) x(7) = 1 + 1.074242(0.8347 7 )cos(0.45437 + 2.76823) = 1 + 1.074242(0.28230)cos(5.94833) = 1 + 0.28641 = 1.28641 (3) 3. a) X(s) = (s+4)/(s+2)(s+5) = 0.6667/(s+2) + 0.3333/(s+5) [2] X(z) = 0.6667z/(z e 2T ) + 0.3333z/(z e 5T ) = 0.6667z/(z e 1 ) + 0.3333z/(z e 2.5 ) = 0.6667z/(z 0.3679) + 0.3333z/(z 0.08208) [1] (3) b) X(s)=1/s(s 2 +1)=1/s(s+j)(s j)=1/s 0.5/(s+j) 0.5/(s j)=1/s [0.5(s j)+0.5(s+j)]/(s+j)(s j)=1/s s/(s 2 +1) [3] X(z)=z/(z 1) (z 2 zcost)/(z 2 2zcosT+1)=z/(z 1) (z 2 0.87758z)/(z 2 1.75517z+1) [1] (4) or X(s)=1/s(s 2 +1)=A/s+(Bs+C)/(s 2 +1)=[A(s 2 +1)+(Bs+C)s]/s(s 2 +1)=[(A+B)s 2 +Cs+A]/s(s 2 +1) A+B=0, C=0 and A=1 A=1, B= 1 and C=0 X(s) = 1/s s/(s 2 +1) 4. x(k+2)+¼x(k)=1 [z 2 X(z) z 2 x(0) zx(1)]+¼x(z) = Z{1} [z 2 X(z) z 2 0 z0]+¼x(z)=z/(z 1) [2] z 2 X(z)+¼X(z)=z/(z 1) X(z)(z 2 +¼)=z/(z 1) X(z)=z/(z 1)(z 2 +¼) X(z)/z=1/(z 1)(z 2 +¼) [1] X(z)/z = 1/(z 1)(z ½/2)(z ½ /2) [1] X(z)/z = 0.8/(z 1) + 0.894432.03444/(z ½/2) + 0.89443 2.03444/(z ½ /2) [3] X(z) = 0.8z/(z 1) + (0.894432.03444)z/(z ½/2) + (0.89443 2.03444)z/(z ½ /2) x(k) = 0.8+20.89443(½) k cos(k/2+2.03444) = 0.8+1.7889(½) k cos[k(/2)+2.03444], k 0 [3] {or: X(z)/z = 1/(z 1)(z 2 +¼) = 0.8/(z-1) 0.8[(z+1)/(z 2 +¼)] X(z) = 0.8z/(z 1) 0.8[(z 2 +z)/(z 2 +¼)] X(z) = 0.8z/(z 1) 0.8[z 2 /(z 2 +¼)] 0.8[z/(z 2 +¼)] = 0.8z/(z 1) 0.8{z 2 /[z 2 +(½) 2 ]} 1.6{½z/[z 2 +(½) 2 ] x(k) = 0.8 0.8(½) k cos(/2)k 1.6(½) k sin(/2)k (let T = 1, e -at = ½ and T = /2 in table) x(k) = 0.8 + (½) k [ 0.8cos(/2)k 1.6sin(/2)k] = 0.8 + (½) k {1.7889cos[(/2)k 4.2487]} x(k) = 0.8 + 1.7889(½) k cos[(/2)k + 2.03449] 5. a) G(z) = (1 z -1 )Z{P(s)/s} = (1 z -1 )Z{5/s 2 (s + 2)} = [(z 1)/z]Z{2.5/s 2 1.25/s + 1.25/(s + 2)} [3] = [(z 1)/z][0.25z/(z 1) 2 1.25z/(z 1) + 1.25z/(z e 0.2 )] [3] = 0.25/(z 1) 1.25 + 1.25(z 1)/(z e 0.2 ) = [0.25(z e 0.2 ) 1.25(z 1)(z e 0.2 ) + 1.25(z 1) 2 ]/(z 1)(z e 0.2 )] = [0.25z 0.25e 0.2 1.25(z 2 z ze 0.2 + e 0.2 ) + 1.25(z 2 2z + 1)]/(z 1)(z e 0.2 )] = [0.25z 0.25e 0.2 1.25z 2 + 1.25z + 1.25ze 0.2 1.25e 0.2 + 1.25z 2 2.5z + 1.25)]/ (z 1)(z e 0.2 )] = [(1.25e 0.2 1)z + (1.25 1.5e 0.2 )]/(z 1)(z e 0.2 )] = (0.023413z + 0.021904)/(z 1)(z 0.81873)] [5] = 0.023413(z + 0.93555)/(z 2 1.81873z + 0.81873) T(z) = G(z)/[1 + G(z)] = [(0.023413z + 0.021904)/(z 1)(z 0.81873)]/ {1 + [(0.023413z + 0.021904)/(z 1)(z 0.81873)]} = (0.023413z + 0.021904)/[(z 1)(z 0.81873) + (0.023413z + 0.021904)] = (0.023413z + 0.021904)/(z 2 1.81873z + 0.81873 + 0.023413z + 0.021904) = (0.023413z + 0.021904)/(z 2 1.795317z + 0.84063) [4] (15) b) z 2 1.795317z + 0.84063 = 0 z = 0.89766 ± j0.18665 = 0.91686±0.20501 [½] e 0.1 = 0.91686 0.1 = ln(0.91686) = 0.868 [½] and d 0.1 = 0.20501 d = 2.0501 [½] D = e -/d = e -0.868/2.0501 = 0.2644 [1½] (26.44%) (3)

VAAL UNIVERSITY OF TECHNOLOGY FACULTY OF ENGINEERING DEPARTMENT: PROCESS CONTROL AND COMPUTER SYSTEMS BACCALAUREUS TECHNOLOGIAE: ENGINEERING ELECTRICAL SUBJECT : DIGITAL CONTROL SYSTEMS IV EIDBS4A ASSESSMENT : UNIT 2 FIRST ASSESSMENT DATE : 21 SEPTEMBER 2017 DURATION : 10H00 11H30 EXAMINER : R FITCHAT MODERATOR : L COETSEE REQUIREMENTS: Pocket calculators may be used INSTRUCTIONS: 1. Neat work is required 2. Number your answers clearly and correctly Full marks = 50 Total = 50 QUESTION PAPER CONSISTS OF: 1 typed page DO NOT TURN THE PAGE BEFORE PERMISSION IS GRANTED

Digital Control Systems IV EIDBS4A Unit 2 First Assessment 21 September 2017 Page 1 r(t) T = 0.5 K T = 0.5 ZOH s(s 1 1) c(t) Figure 1 Question 1 Refer to the digital control system in Figure 1, with P(s) = 1/s(s+1), ZOH, a proportional controller with gain K and a sampling period of T = 0.5 sec. a) Determine the characteristic equation Q(z), of the system. (10) b) Use the Jury test to determine the marginal values of the gain K, that will ensure stability of the system. (10) Question 2 a) Draw the root locus for the system in Figure 1, for variations in the value of K. (8) b) Use the root locus to determine the marginal value of K for stability. (5) Question 3 Consider the digital control system shown in Figure 2. Design a digital controller B(z), such that the dominant closed loop poles have a damping ratio of 0.5 ( = 0.5) and a settling time of 4 sec. (t s = 4). Use a sampling period of 0.5 second (T = 0.5) for your design. Assume a first order controller device with transfer function of the form: B(z) = K z a z b (17) R(z) T=0.5 Digital controller B(z) T=0.5 Zero order hold. P(s) 1 s(s 1) C(z) Appendix: z transforms ---ooo000ooo--- Total: 50 X(s) x(t) x(kt) X(z) X(s) x(t) x(kt) X(z) 1 (t) (kt) 1 e -st X(s) x(t-t) x[(k-1)t] z -1 X(z) 1/s 1 1 z/(z-1) x[(k-2)t] z -2 X(z) 1/s 2 t kt Tz/(z-1) 2 x[(k+1)t] zx(z)-zx(0) 2/s 3 t 2 (kt) 2 T 2 z(z+1)/(z-1) 3 x[(k+2)t] z 2 X(z)-z 2 x(0)-zx(1) 1/(s+a) e -at e -akt z/(z-e -at ) a k z/(z-a) 1/(s+a) 2 te -at kte -akt Tze -at /(z-e -at ) 2 ka k az/(z-a) 2 a/s(s+a) 1-e -at 1-e -akt z(1-e -at )/(z-1)(z-e -at ) X(s+a) e -at x(t) e -akt x(kt) X(ze at ) (sa)2 sa (sa)2 e -at sint e -akt sinkt e -at cost e -akt coskt Figure 2 ze -at sin T z 2 -(2e -at cost)ze - 2ab k cos(k+) 2aT z 2 -ze -at cost z 2 -(2e -at cost)ze -2aT 1-e-sT s za za z-b z-b X(s) (1-z -1 X(s) )Z s

Faculty: Department: Diploma: Subject: Internal code: VAAL UNIVERSITY OF TECHNOLOGY Engineering Cover Sheet for Memorandum (Unit 2 First Assessment 21 September 2017) Process Control and Computer Systems Baccalaureus Technologiae: Engineering: Electrical Digital Control Systems IV EIDBS4A Nine digit code: 080821206 Hours: Examiner: Moderator: 1½ R Fitchat L Coetsee Total Marks: 50 Full marks: 50 Signature of Examiner: Date: Signature of Moderator: Date:

Digitale Beheerstelsels IV EIDBS4A Eenheid 2 Eerste Evaluasie 21 September 2017 Memorandum Bladsy 1 1. a) G(z) = (1 z 1 )Z{(1/s)K/s(s + 1)} = K(1 z -1 )Z{1/s 2 (s + 1)} = K[(z 1)/z]Z{1/s 2 1/s + 1/(s + 1)} [3] = K[(z 1)/z][Tz/(z 1) 2 z/(z 1) + z/(z e T )] [2] = K[0.5/(z 1) 1 + (z 1)/(z 0.606531)] =K[0.5(z 0.606531) (z 1)(z 0.606531) + (z 1) 2 ]/[(z 1)(z 0.606531)] = K[0.5z 0.303266 (z 2 z 0.606531z + 0.606531) + (z 2 2z + 1)]/[(z 1)(z 0.606531)] = K(0.5z 0.303266 z 2 + z + 0.606531z 0.606531 + z 2 2z + 1)/(z 1)(z 0.606531) = K(0.106531z + 0.090203)/(z 2 1.606531z + 0.606531) [3] G(z) + 1 = 0 K(0.106531z + 0.090203)/(z 2 1.606531z + 0.606531) + 1 = 0 K(0.106531z + 0.090203) + (z 2 1.606531z + 0.606531) = 0 Q(z) = z 2 + (0.106531K 1.606531)z + (0.090203K + 0.606531) [2] (10) b) Q(1) = 1 + 0.106531K 1.606531 + 0.090203K + 0.606531 = 0.196734K so Q(1) > 0 0.196734K > 0 K > 0 [2] and Q( 1) = 1 (0.106531K 1.606531) + (0.090203K + 0.606531)= 3.213062 0.016328K therefore Q( 1) > 0 3.213062 0.016328K > 0 K < 196.7823 [2] also a 0 <a 2 0.090203K + 0.606531 < 1 0.090203K + 0.606531 < 1 and 0.090203K + 0.606531 > 1 [20] K < 4.362039 [2] and K > 17.810173 [2] For stability: 0< K < 4.362039 [2] (10) 2. a) G(z)= K(0.106531z + 0.090203)/(z 1)(z 0.606531) (from Question 1 a) Thus Q(z) = G(z) + 1 = 0 K(0.106531z + 0.090203)/(z 1)(z 0.606531) + 1 = 0 K(0.106531z + 0.090203) + (z 1)(z 0.606531) = 0 Im z K = (z 1)(z 0.606531)/(0.106531z + 0.090203) = ( z 2 + 1.606531z 0.606531)/(0.106531z+0.090203) P z =1 dk/dz=[( 2z + 1.606531)(0.106531z + 0.090203) [13] [17] 0.106531( z 2 + 1.606531z 0.606531)] /(0.106531z + 0.090203) 2 0.213062z 2 0.00926065z + 0.144914 + 0.106531z 2 0.1711454z + 0.06461435 = 0 0.106531z 2 0.1804061z + 0.2095284 = 0 0.106531z 2 + 0.1804061z 0.2095284 = 0 [4] {z 2 + 1.693461z 1.96683 = 0} z = [ 0.1804061±(0.1804061 2 40.106531 0.2095284)]/(20.106531) =[ 0.1804061 ± 0.3490472]/0.213062 = 0.8467305 ± 1.638242 z = 0.7915115 and 2.484973 breakaway points are 0.7915115 and 2.484973 (8) b) At P z = 1 and from Q(z) = z 2 + (0.106531K 1.606531)z + (0.090203K + 0.606531) (0.090203K + 0.606531) = 1 0.090203K = 0.393469 K = 4.362039 (5) 3. t s = 4/ 4 = 4/ = 1 [1] = / n 0.5 = 1/ n n = 2 [1] n = ( 2 + d 2 ) d = ( n 2 2 ) = (2 2 1 2 ) = 1.7321 r/s [1] z = e -T d T = e -10.5 (1.73210.5) = 0.60650.86605 r [2] A(z) = (1 z 1 )Z{(1/s)1/(s + 1)} = (1 z 1 )Z{1/s 2 (s + 1)} = (1 z 1 )Z{1/s 2 1/s + 1/(s + 1)} = [(z 1)/z]{Tz/(z 1) 2 z/(z 1) + z/(z e T )]} = 0.5/(z 1) 1 + (z 1)/(z 0.606531) = [0.5(z 0.606531) (z 1)(z 0.606531) + (z 1) 2 ]/[(z 1)(z 0.606531)] = [0.5z 0.303266 (z 2 z 0.606531z + 0.606531) + (z 2 2z + 1)]/[(z 1)(z 0.606531)] = (0.5z 0.303266 z 2 + z + 0.606531z 0.606531 + z 2 2z + 1)/(z 1)(z 0.606531) = (0.106531z + 0.090203)/(z 1)(z 0.606531) [4] The characteristic equation of the final system is: B(z)A(z)+1=0 with B(z) = K(z 0.606531)/(z + b) [K(z 0.606531)/(z + b)][(0.106531z + 0.090203)/(z 1)(z 0.606531)] + 1 = 0 [(0.106531Kz + 0.090203K)/(z + b)(z 1)] + 1 = 0 [3] z 2 z + bz b + 0.106531Kz + 0.090203K = 0 z 2 + (0.106531K + b 1)z + (0.090203K b) = 0 0.60650.86605 r must be a solution of the equation: 0.090203K b = 0.6065 2 0.090203K b = 0.3678... (1) and 0.106531K + b 1 = 20.6065cos0.86605 = 0.785831 0.106531K + b = 0.214169... (2) From (1) and (2): K = 2.95815 [2] and b = 0.100966 [2] B(z) = 2.95815(z 0.606531)/(z 0.100966) [1] -2.48497 [1] Amplitude 1.4 1.2 1 0.8 0.6 0.4 0.2-0.84673 [1] Step Response 0.7915 [1] 0.6065 [1] T(z)=(0.3151z+0.2668)/ (z 2-0.7858z+0.3678) Rez 1 0 0 5 10 15 20 Samples (sec)