Optics of Liquid Crystal Displays

Similar documents
Chap. 2. Polarization of Optical Waves

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

5. Liquid Crystal Display

PMARIZED LI6HT FUNDAMENTALS AND APPLICATIONS EBWABD COLLETT. Measurement Concepts, Inc. Colts Neck, New Jersey

Polarized Light. Second Edition, Revised and Expanded. Dennis Goldstein Air Force Research Laboratory Eglin Air Force Base, Florida, U.S.A.

Chap. 5. Jones Calculus and Its Application to Birefringent Optical Systems

Lecture 5: Polarization. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Outline

Birefringent Thin Films for LCDs. Pochi Yeh

3.4 Elliptical Parameters of the Polarization Ellipse References

Brewster Angle and Total Internal Reflection

Brewster Angle and Total Internal Reflection

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11 13

FUNDAMENTALS OF POLARIZED LIGHT

Introduction to Polarization

Simulations of liquid-crystal Fabry Perot etalons by an improved 4Ã4 matrix method

Optics and Optical Design. Chapter 6: Polarization Optics. Lectures 11-13

BISTABLE twisted nematic (BTN) liquid crystal displays

Electromagnetic Theory for Microwaves and Optoelectronics

Chap. 4. Electromagnetic Propagation in Anisotropic Media

Jones calculus for optical system

PRINCIPLES OF PHYSICAL OPTICS

Electromagnetic Theory for Microwaves and Optoelectronics

ELECTRODYNAMICS OF CONTINUOUS MEDIA

Lasers and Electro-optics

Control of Dispersion in Form Birefringent-Based Holographic Optical Retarders

FAST-RESPONSE LIQUID CRYSTAL DISPLAYS

Viewing angle controllable displays with a blue-phase liquid crystal cell

Contents. 1 Basic Equations 1. Acknowledgment. 1.1 The Maxwell Equations Constitutive Relations 11

OPTI 501, Electromagnetic Waves (3)

Polarimetry in the E-ELT era. Polarized Light in the Universe. Descriptions of Polarized Light. Polarizers. Retarders. Fundamentals of Polarized Light

ECE 185 ELECTRO-OPTIC MODULATION OF LIGHT

ELLIPSOMETRY AND POLARIZED LIGHT

Lecture 4: Anisotropic Media. Dichroism. Optical Activity. Faraday Effect in Transparent Media. Stress Birefringence. Form Birefringence

Quarter wave plates and Jones calculus for optical system

Chapter 6. Polarization Optics

POLARIZATION OF LIGHT

Chapter 9 Electro-optic Properties of LCD

Near-perfect modulator for polarization state of light

CHAPTER 2. COULOMB S LAW AND ELECTRONIC FIELD INTENSITY. 2.3 Field Due to a Continuous Volume Charge Distribution

Optimizing the Nematic Liquid Crystal Relaxation Speed by Magnetic Field

Polarizers and Retarders

Switchable Polarization-Independent Liquid- Crystal Fabry-Perot Filter

ELECTROMAGNETIC FIELDS AND WAVES

Polarized and unpolarised transverse waves, with applications to optical systems

Continuous viewing angle-tunable liquid crystal display using temperature-dependent birefringence layer

16. More About Polarization

Lecture 8: Polarimetry 2. Polarizers and Retarders. Polarimeters. Scattering Polarization. Zeeman Effect. Outline

Summary of Fourier Optics

Zigzag Electrodes for Suppressing the Color Shift of Kerr Effect-Based Liquid Crystal Displays Linghui Rao, Zhibing Ge, and Shin-Tson Wu, Fellow, IEEE

Optics, Optoelectronics and Photonics

COPYRIGHTED MATERIAL. Preliminaries

Lab #13: Polarization

Dual Structure of Cholesteric Liquid Crystal Device for High Reflectance

Chap. 1 Fundamental Concepts

CLASSICAL ELECTRICITY

Simulation-based Design of In-Plane Switching Liquid Crystalline Display Pixels

From the theory of liquid crystals to LCD-displays

Physics I Keystone Institute Technology & Management Unit-II

Photoelasticity of Glass

Engineering Electromagnetics

INTRODUCTION TO ELECTRODYNAMICS

Optical Mineralogy. Optical Mineralogy. Use of the petrographic microscope

Numerical Simulation of Nonlinear Electromagnetic Wave Propagation in Nematic Liquid Crystal Cells

Modeling liquid-crystal devices with the three-dimensional full-vector beam propagation method

MP5: Soft Matter: Physics of Liquid Crystals

Physics of Light and Optics

Chiroptical Spectroscopy

FORWARD AND INVERSE PROBLEM FOR NEMATIC LIQUID CRYSTALS

Light for which the orientation of the electric field is constant although its magnitude and sign vary in time.

Diode Lasers and Photonic Integrated Circuits

Typical anisotropies introduced by geometry (not everything is spherically symmetric) temperature gradients magnetic fields electrical fields

POLARIZATION FUNDAMENTAL OPTICS POLARIZATION STATES 1. CARTESIAN REPRESENTATION 2. CIRCULAR REPRESENTATION. Polarization. marketplace.idexop.

ELECTROMAGNETISM. Second Edition. I. S. Grant W. R. Phillips. John Wiley & Sons. Department of Physics University of Manchester

VASE. J.A. Woollam Co., Inc. Ellipsometry Solutions

Topic 4: Waves 4.3 Wave characteristics

Electromagnetic fields and waves

Polarization of Light and Birefringence of Materials

JWUS_LC-Khoo_Prelims.qxd 1/19/ :32 PM Page i Liquid Crystals

Direct measurement of electric-field-induced birefringence in a polymer-stabilized blue-phase liquid crystal composite

Liquid-Crystal Devices and Waveplates for light controlling

beam (as different VSP One element from 400 to 1500nm diffraction, No segments

4. Circular Dichroism - Spectroscopy

PHYSICAL PROPERTIES OF CRYSTALS

A Fast-Response A-Film-Enhanced Fringe Field Switching LCD

CHAPTER 3: THE BASIC THEORY OF THE POLARIZATION OF LIGHT. Interference and diffraction phenomena proved that light is a wave motion and enabled

[D] indicates a Design Question

Wave Propagation in Uniaxial Media. Reflection and Transmission at Interfaces

Transmission Electron Microscopy

Physics 313: Laboratory 8 - Polarization of Light Electric Fields

Wide-Acceptance-Angle Circular Polarizers (DIV)

Lecture 8 Notes, Electromagnetic Theory II Dr. Christopher S. Baird, faculty.uml.edu/cbaird University of Massachusetts Lowell

Distributed feedback semiconductor lasers

ALCT Measurement Principles

WAVE PROPAGATION AND SCATTERING IN RANDOM MEDIA

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

E The oscillating E-field defines the polarization of the wave. B

Chapter 5. Liquid crystal cell alignment

FUNDAMENTALS OF OCEAN ACOUSTICS

Highenergy Nuclear Optics of Polarized Particles

A B. What s a Liquid Crystal? G = H - TS K = [B]/[A] K = e - G/RT

Transcription:

Optics of Liquid Crystal Displays Second Edition POCHIYEH CLAIRE GU WILEY A John Wiley & Sons, Inc., Publication

Contents Preface Preface to the First Edition xiii xv Chapter 1. Preliminaries 1 1.1. Basic Components of LCDs 2 1.1.1. Polarizers 2 1.1.2. Transparent Electrodes 4 1.1.3. Liquid Crystal Cell 6 1.1.4. Birefringent Thin Film Compensators 7 1.1.5. Color Filters 8 1.1.6. Brightness Enhancement Films (BEFs) 9 1.1.7. AM and TFTs (Active Matrix and Thin Film Transistors) 11 1.1.8. Diffusers 12 1.1.9. Backlights 14 1.2. Properties of Liquid Crystals 15 1.2.1. Orientational Order Parameter 20 1.2.2. Dielectric Constants 21 1.2.3. Refractive Index 24 1.2.4. Elastic Constants 26 1.2.5. Viscosity Rotational Viscosity 27 1.2.6. Surface Alignment and Rubbing 27 1.2.7. Field-Induced Distortion Electro-Optical Effect 30 1.2.8. Dynamics of Molecular Rotation Rise Time and Decay Time 39 References 47 Suggested Readings 48 Problems 48 Chapter 2. Polarization of Optical Waves 54 2.1. Monochromatic Plane Waves and Their Polarization States 54 2.1.1. Linear Polarization States 56 2.1.2. Circular Polarization States 57 2.1.3. Elliptical Polarization States 57 2.2. Complex Number Representation 61 2.3. Jones Vector Representation 62 2.4. Partially Polarized and Unpolarized Light 64

VI CONTENTS 2.5. Poincare Sphere 67 2.5.1. Phase Retarders 70 2.5.2. Polarization Transformation Using Retarders and the Graphical Representation on the Poincare Sphere 71 2.5.3. Pancharatnam Phase 77 References 78 Problems 78 Chapter 3. Electromagnetic Propagation in Anisotropic Media 82 3.1. Maxwell Equations and Dielectric Tensor 82 3.1.1. Lorentz Reciprocity Theorem 89 3.2. Plane Waves in Homogeneous Media and Normal Surface 90 3.2.1. к in the xy-plane 95 3.2.2. к in the yz-plane 95 3.2.3. к in the z*-plane 96 3.2.4. Classification of Media 97 3.2.5. Power Flow in Anisotropic Media (I) 100 3.2.6. Power Flow in Anisotropic Media (II) 104 3.3. Light Propagation in Uniaxial Media 107 3.3.1. Propagation Perpendicular to the c-axis 109 3.3.2. Propagation in the *г-р1апе 110 3.3.3. Propagation along the c-axis 111 3.4. Double Refraction at a Boundary 112 3.5. Anisotropic Absorption and Polarizers 126 3.5.1. Extinction Ratio and Real Sheet Polarizers 127 3.5.2. Field of View of Crossed Polarizers 128 3.5.3. Polarization States D O1 and D o2 130 3.5.4. Reflective Polarizers 133 3.6. Optical Activity and Faraday Rotation 139 3.6.1. Faraday Rotation 149 3.7. Light Propagation in Biaxial Media 151 3.7.1. Method of Index Ellipsoid 154 3.7.2. Perturbation Approach 158 3.7.3. Classification of Biaxial Crystals 160 References 162 Problems 163 Chapter 4. Jones Matrix Method 173 4.1. Jones Matrix Formulation 173 4.1.1. Example: A Half-Wave Retardation Plate 178 4.1.2. Example: A Quarter-Wave Plate 178 4.1.3. General Properties of the Jones Matrix 179 4.1.4. Eignvectors of Jones Matrix 186

CONTENTS 4.1.5. Linearly Polarized Inputs with Linearly Polarized Outputs 188 4.1.6. Equivalent Circuit of a General Birefringent Network 190 4.1.7. Tunable Wave Plates 192 4.1.8. Circular and Quasi-Circular Polarizers 194 4.2. Intensity Transmission Spectrum 199 4.2.1. Example: A Birefringent Plate Sandwiched between Parallel Polarizers (an a-plate between Parallel Polarizers) 201 4.2.2. Example: A Birefringent Plate Sandwiched between a Pair of Crossed Polarizers (an a-plate between Crossed Polarizers) 202 4.2.3. Example: A Birefringent Plate Sandwiched between a Pair of Polarizers (an a-plate between Two Polarizers) 203 4.2.4. Example: A Birefringent Plate Sandwiched between a Pair of Polarizers (a c-plate between Two Polarizers) 204 4.2.5. Example: A Birefringent Plate Sandwiched between a Pair of Crossed Polarizers (a c-plate between Crossed Polarizers) 204 4.2.6. Example: A Birefringent Plate Sandwiched between a Pair of Parallel Polarizers (a c-plate between Parallel Polarizers) 204 4.2.7. An Alternative Approach 205 4.2.8. Method of Projection Operators and Propagation Operators 206 4.3. Optical Properties of TN-LC (Adiabatic Following or Waveguiding) 208 4.3.1. Adiabatic Following (Waveguiding in TN-LC) 210 4.3.2. 90 TN-LC 211 4.3.3. Transmission Properties of a General TN-LCD 215 4.3.4. Normal Modes of Propagation in a General TN-LC 218 4.4. Phase Retardation at Oblique Incidence 224 4.4.1. a-plates 225 4.4.2. c-plates 228 4.5. Conoscopy 229 4.5.1. a-plate of Uniaxial Samples 229 4.5.2. c-plate of Uniaxial Crystals 231 4.5.3. c-cut Biaxial Plate 233 4.6. Reflection Property of a General TN-LCD with a Back Mirror 234

VUl CONTENTS 4.7. Phase Retardation of a Biaxial Plate 242 4.7.1. Small 0 Approximation (Assume a «1, ß «1) 246 4.7.2. The Polarization States of Modes of Propagation 247 4.7.3. Polarization States of Ordinary Mode in Polarizers 252 4.8. Achromatic Wave Plates 254 4.9. Broadband Quasi-Circular Polarizers 264 4.10. Wide Field-of-View Elements 269 4.10.1. Lyot-I Wide Field-of-View Elements 271 4.10.2. Lyot-II Wide Field-of-View Elements 273 4.10.3. Lyot-III Wide Field-of-View Elements 275 References 276 Suggested Readings 276 Problems 277 Chapter 5. Liquid Crystal Displays 290 5.1. VA-LCDs 291 5.1.1. Principle of Operation 291 5.1.2. Transmission Property of Field-Off State 293 5.1.3. Transmission Property of Field-On State 294 5.1.4. Multidomain Vertically Aligned Liquid Crystal Display (MVA-LCD) 312 5.2. IPS-LCDs 316 5.2.1. Principles of Operation 317 5.2.2. Transmission Property of Field-Off State 320 5.2.3. Transmission Property of Field-On State 324 5.3 TN-LCDs 331 5.3.1. Principle of Operation 332 5.3.2. Transmission Property of Field-Off State 335 5.3.3. Transmission Property of Field-On State 339 5.4. STN Displays 365 5.4.1. Steepness of Electrodistortion Curves of STN Cell 367 5.4.2. Transmission Properties of STN-LCD in the Field-Off State 374 5.4.3 Transmission of STN-LCD in the Field-On State 381 5.5. Nematic Liquid Crystal Display (N-LCD) Modes 388 5.5.1. PA Cells 389 5.5.2. Bend-Aligned (BA) Cells 394 5.6. Polymer-Dispersed Liquid Crystal Displays (PD-LCDs) 398 5.7. Reflective LCDs 404 5.8. Transflective LCDs 407

CONTENTS 5.9. 5.10. 5.11. Projection Displays Other Display Systems 5.10.1. Ferroelectric LCDs 5.10.2. Cholesteric LCD 5.10.3. Liquid Crystal on Silicon (LCoS) Summary References Suggested Readings Problems ix 410 412 412 416 417 419 419 421 422»ter 6. 6.1. 6.2. 6.3. 6.4. Matrix Addressing, Colors, and Properties of LCDs Multiplexed Displays Active Matrix (AM) Displays 6.2.1. Principle of Thin Film Transistor (TFT) Operation 6.2.2. Array Fabrication 6.2.3. Cell Assembly Optical Throughput of TFT-LCDs 6.3.1. Polarizers 6.3.2. Color Filters Colors in LCDs 6.4.1. Addition (or Mixing) of Colors and CIE 1976 Color Space (L*u*v*) References Suggested Readings Problems 426 426 430 431 440 445 446 446 448 450 452 457 458 458 ter 7. 7.1. 7.2. 7.3. 7.4. 7.5. 7.6. Optical Properties of Cholesteric Liquid Crystals Optical Phenomena in CLCs Dielectric Tensor of an Ideal CLC Exact Solutions at Normal Incidence 7.3.1. Dispersion Relation 7.3.2. Polarization States of Normal Modes 7.3.3. Power Orthogonality Bragg Regime {n 0 p < X < n e p) Coupled-Mode Analysis 7.4.1. Reflectance of CLCs Mauguin Regime (A, «0.5/?An) Circular Regime 7.6.1. Short Wavelength Circular Regime (0.5npAn «X «p) 7.6.2. Long Wavelength Circular Regime (nj> «X) References Suggested Readings Problems 461 461 462 465 466 467 471 471 475 477 479 479 479 481 481 481

X CONTENTS Chapter 8. Extended Jones Matrix Method 485 8.1. Mathematical Formulation and Applications 486 8.1.1. Reflection and Refraction at the Interface 486 8.1.2. Matrix Formulation 493 8.1.3. Small Birefringence Approximation 495 8.1.4. Comparison with the Conventional Jones Calculus 500 8.1.5. Crossed Polarizers 502 8.1.6. Arbitrary c-axis Orientation 505 8.1.7. Application to LCDs 509 8.1.8. Generalized Jones Matrix Method 517 8.2. Another Extended Jones Matrix Method 523 8.3. 4x4 Matrix Method 526 8.3.1. Mathematical Formulation 526 8.3.2. Reflection and Transmission 530 8.3.3. Berreman's 4x4 Matrix Method 532 8.4. General Properties of A 4 x 4 Matrix 533 8.5. Mueller Matrix Algebra and Jones Matrix Algebra 546 8.6. Reciprocity Theorem in Anisotropic Layered Media 562 References 567 Problems 567 Chapter 9. Optical Compensators for Liquid Crystal Displays 570 9.1. Viewing Angle Characteristics of LCDs 571 9.1.1. TN-LCDs 572 9.1.2. VA-LCDs 579 9.1.3. Multidomain VA-LCDs (MVA-LCDs) 589 9.1.4. IPS-LCDs 589 9.2. Origin of Leakage of Light in LCDs and Compensators 595 9.2.1. Leakage of Light through Crossed Polarizers 598 9.2.2. Leakage of Light due to LC Cell 601 9.2.3. Birefringent Thin Film Compensators 605 9.3. LCDs with Compensators 614 9.3.1. CR Improvement in LCDs with Birefringence Compensators and Polarization Compensators 615 9.3.2. Gray Level Performance of LCDs with Birefringence Compensators and Polarization Compensators 631 9.4. Compensation Film with Positive Birefringence (O-Plate) 648 9.5. Biaxial Compensation Film 654 9.6. Materials for Optical Phase Retardation Compensation 659 9.6.1. ö-plates 659 9.6.2. oplates 659 9.6.3. o-plates 659

CONTENTS XI 9.6.4. Form Birefringence 660 9.6.5. Form Birefringence in Thin-Layered Media 660 9.6.6. Form Birefringence in Composite Media 662 References 664 Problems 666 Appendix A. Elastic and Electromagnetic Energy Density 674 Appendix B. Electro-Optical Distortion Tilt Mode 680 Appendix С. Electro-Optical Distortion Twist Mode 689 Appendix D. Electro-Optical Distortion in a TN-LC 694 Appendix E. Electro-Optical Distortion in an STN-LC 702 Appendix F. Form Birefringence of Composite Media 709 Appendix G. Spherical Trigonometry 712 Appendix H. Mie Scattering and Diffusers 721 Appendix I. Variational Principles and Lagrange's Equations 741 Author Index 745 Subject Index 749