Institut des NanoSciences de Paris

Similar documents
Polar oxide surfaces and ultra-thin films

NANOSTRUCTURED OXIDES: NEW MATERIALS FOR ENERGY AND ENVIRONMENT

Catalysis by supported metal clusters and model systems

The unusual properties supported gold: size, charging, support effects

STM spectroscopy (STS)

Water clustering on nanostructured iron oxide films

Outline. Introduction: graphene. Adsorption on graphene: - Chemisorption - Physisorption. Summary

Oxygen-Induced Transformations of an FeO(111) Film on Pt(111): A Combined DFT and STM Study

Supporting Information

Supporting Information for PbTiO 3

Properties of Individual Nanoparticles

Morphology and surface reconstructions of m-plane GaN

1 IMEM-CNR, U.O.S. Genova, Via Dodecaneso 33, Genova, IT. 2 Dipartimento di Fisica, Università di Genova, Via Dodecaneso 33, Genova, IT

List of publications. 56. X. Lin, N. Nilius*, J. Phys. Chem. C 112 (2008) Self assembly of MgPc molecules on FeO thin films

Spontaneous dehydrogenation of methanol over defect-free MgO(100)

Energy Spectroscopy. Ex.: Fe/MgO

Defects in TiO 2 Crystals

Local zero-bias anomaly in tunneling spectra of a transition-metal oxide thin film

University of Munich, Theresienstr. 41, Munich, Germany and b Department of Physics, University of California,

Electronic Supplementary Information Structure of Clean and Hydrated α-al 2 O 3 (11 02) Surfaces: Implication on Surface Charge.

Designing Graphene for Hydrogen Storage

properties Michele Catti Dipartimento di Scienza dei Materiali Università di Milano Bicocca, Italy

Chapter 2 Surface Science Studies of Metal Oxide Gas Sensing Materials

2) Atom manipulation. Xe / Ni(110) Model: Experiment:

Materials 218/UCSB: Phase transitions and polar materials

Enhanced CO Oxidation on Oxide/Metal Interface: From Ultra-High Vacuum to Near-Atmospheric Pressures.

Metal Oxides Surfaces

Free energy sampling for electrochemical systems

Microscopical and Microanalytical Methods (NANO3)

Charge-induced formation of linear Au clusters on thin MgO films: Scanning tunneling microscopy and density-functional theory study

Molybdenum Sulfide based electronics. Gotthard Seifert Physikalische Chemie,Technische Universität Dresden, Germany

MPI Stuttgart. Atomic-scale control of graphene magnetism using hydrogen atoms. HiMagGraphene.

tunneling theory of few interacting atoms in a trap

What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

Coverage-Dependent Water Agglomerates on Fe 3 O 4 (001):

First principles simulations of materials and processes in photocatalysis

Surface structure vs. surface science; Atomic imaging of surface with STM; Nanoscale surface probing with STM; Exploration of surface catalysis.

Ultrathin films of transition-metal oxides (TMO) supported

Potentials, periodicity

Hydrogen Storage in Metalfunctionalized

Scanning Tunneling Microscopy: theory and examples

Ari P Seitsonen CNRS & Université Pierre et Marie Curie, Paris

Self-assembly of molecules on surfaces. Manuel Alcamí Departamento de Química Universidad Autónoma de Madrid

Published in "The Journal of Physical Chemistry C 121(8): , 2017" which should be cited to refer to this work.

Electric displacement as the fundamental variable in electronic-structure calculations

The interplay between structural, magnetic and electronic properties in a FeO/Pt(111) ultra-thin film

Layer-by-layer epitaxial growth of polar FeO(111) thin films on MgO(111)

PREDICTION OF THERMODYNAMIC STABILITY OF METAL/OXIDE INTERFACE

First Principles Calculations on the Diffusion of Cu, Ag and Au Atoms or Aggregates on the Bulk and Surface of Titania

Supplementary Information. Edge Structures for Nanoscale Graphene Islands on Co(0001) Surfaces

Electronic Supporting Information for

Atomic Arrangement. Primer in Materials Spring

Prerequisites for reliable modeling with first-principles methods. P. Kratzer Fritz-Haber-Institut der MPG D Berlin-Dahlem, Germany

Elementary mechanisms of homoepitaxial growth in MgO(001) : from the isolated adsorbates to the complete monolayer

CO adsorption and thermal stability of Pd deposited on a thin FeO(111) film

Supplementary Information for Solution-Synthesized Chevron Graphene Nanoribbons Exfoliated onto H:Si(100)

Self-Assembly of Two-Dimensional Organic Networks Containing Heavy Metals (Pb, Bi) and Preparation of Spin-Polarized Scanning Tunneling Microscope

Metal-supported ultrathin oxide film systems as designable catalysts and catalyst supports

Non-reactive metal-oxide interfaces: from model calculations towards realistic simulations

Structures of Solids. Unit Cells - Not(?) Chapter 4 Ionic and Other Inorganic Solids. CHEM 462 Wednesday, September 22 T.

Modifying the adsorption characteristic of inert silica films by inserting anchoring sites

CO Adsorption Site Preference on Platinum: Charge Is the Essence

Ionic Bonding. Chem

Energy Spectroscopy. Excitation by means of a probe

Ordered Peierls distortion prevented at growth. onset of GeTe ultra-thin films

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

Tensor-LEED Analysis of Oxide Surfaces

Low Energy Electron Diffraction - LEED

SUPPLEMENTARY INFORMATION

Molecular Dynamics on the Angstrom Scale

Support effects on the atomic structure of ultrathin silica films on metals

KINETICS OF OXIDE GROWTH ON METAL SURFACES

Metal Organic interfaces

Supplementary Information

Xiang-Kui Gu,, Botao Qiao,,, Chuan-Qi Huang, Wu-Chen Ding, Keju Sun, Ensheng Zhan,, Tao Zhang, Jingyue Liu*,,, and Wei-Xue Li*,

Surface Reactivity Enhancement by O 2 Dissociation on a. Single-layer MgO Film Deposited on Metal Substrate

Chemical Transformations in Ultrathin Chalcogenide Nanowires

Special Properties of Au Nanoparticles

C. D. Lee and R. M. Feenstra Dept. Physics, Carnegie Mellon University, Pittsburgh, PA 15213

Wolf-Dieter SCHNEIDER EPF de Lausanne, IPN CH-1015 Lausanne, Switzerland. the abdus salam international centre for theoretical physics SMR

Atomic-scale studies of molecular functionalization of graphene

Chemical bonding in solids from ab-initio Calculations

Supporting Information Towards N-doped graphene via solvothermal synthesis

Chapter 12: Structures & Properties of Ceramics

Understanding Irreducible and Reducible Oxides as Catalysts for Carbon Nanotubes and Graphene Formation

A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films

When (2 + 2) 4? Alexandre Tkatchenko Fritz Haber Institut der Max Planck Gesellschaft, Berlin, Germany

Oxide materials for electronics Inorganic Materials and Ceramics Research Group

JOHN G. EKERDT RESEARCH FOCUS

III-V nanostructured materials synthesized by MBE droplet epitaxy

Impurities and graphene hybrid structures: insights from first-principles theory

Electrostatic charging and redox effects in oxide heterostructures

Second harmonic generation in silicon waveguides strained by silicon nitride

Electronic Structure of Surfaces

SYNTHESIS OF INORGANIC MATERIALS AND NANOMATERIALS. Pr. Charles Kappenstein LACCO, Laboratoire de Catalyse en Chimie Organique, Poitiers, France

SLS Symposium on Materials

Enhanced Ferromagnetism in ZnO Nanoribbons and Clusters Passivated with Sulfur

Heterogenous Nucleation in Hard Spheres Systems

Crystalline Surfaces for Laser Metrology

Supporting Information for. Ab Initio Metadynamics Study of VO + 2 /VO2+ Redox Reaction Mechanism at the Graphite. Edge Water Interface

Transcription:

CNRS / Photothèque Cyril Frésillon Institut des NanoSciences de Paris Polarity in low dimensions: MgO nano-ribbons on Au(111) J. Goniakowski, C. Noguera Institut des Nanosciences de Paris, CNRS & Université Pierre et Marie Curie, Paris, France

Catalysis by Supported Metal Nanoclusters Role of oxide support? Heterogeneous catalysis Surface science Real system: Au / TiO 2 Model system: Au / TiO 2 (110) Bulk oxide surfaces ultra-thin oxide films complex oxide/metal systems diffusion dissociation reaction adsorption METAL

Metal-supported oxides nano-objects: MgO/Au(111) Y. Pan et al., J. Phys. Chem. C 116 11126 (2012). Triangular MgO(111) 1 ML islands, ~ 100 Å large. MgO lattice parameter larger than in MgO bulk. 10x10 nm 2 MgO zig-zag edges parallel to the Au[110] rows. 60x60 nm 2 Hexagonal phase: Mg@300K p O2 = 5x10-7 mbar p H2O > 1x10-9 mbar Outline Effect of film thickness Metal-supported oxide monolayers Polarity in low dimensional and finite-size objects Compensation of edge polarity MgO(111) arm-chair edge

Polar materials versus polar surfaces Bulk ferroelectrics Polar orientations in non-polar crystals PbTiO 3 rocksalt (100) (111) V PbO TiO 2 PbO V PbO Ti 4+ 2O 2- PbO Uncompensated polar surface V Compensating surface charges V Jump of the electrostatic potential DV due to the charge separation

Polar (111) surface of bulk MgO (1x1) surface: 2D electron gas DFT-GGA (WIEN) O-termination Mg-termination (2x2) surface: Non-stoechiometric reconstructions (2x2) octopolar (2x2) a-hex surface bulk surface bulk DFT-GGA (ABINIT) E surf ~ 5 J/m 2 A. Pojani, et al., Surf. Sci. 387, 354 (1997). J. Goniakowski, C. Noguera, PRB 60, 16120 (1999). E surf ~ 2 J/m 2 F. Finocchi et al., PRL 92, 136101 (2004).

Polarity at the nano-scale: ultra-thin oxide films MgO(111) Mg Uncompensated POLAR Strongly thicknessdependent Compensated POLAR Bulk-like surface reconstruction Non POLAR Novel crystalline structure DFT GGA (VASP) Flat graphene-like 1ML MgO(111) Phys. Rev. Lett. 93, 215702 (2004) Phys. Rev. Lett. 98, 205701 (2007)

Polarity at the nano-scale: experimental evidence Wurtzite graphitic transition: ZnO(0001)/Ag C. Tusche et al. PRL (2007) Uncompensated polarity and polar catastrophe: LaAlO 3 /SrTiO 3 > 2ML ZnO(0001) 2ML ZnO(0001) 3ML LaAlO 3 Lee and Demkov PRB (2008)

Metal-supported ultra-thin films Induced polarity E e - F e - metal oxide 1ML MgO(111)/Me(111) DFT GGA (VASP) E F electrons towards the oxide electrons towards the metal Au E F metal oxide Electrostatic coupling between charge & structure induced film polarization DFT GGA (VASP) Au cations outwards e - e - anions outwards J. Goniakowski, C. Noguera, Phys. Rev. B 79, 155433 (2009)

Induced polarity + lattice mismatch patterning Topographic (50 x 50 nm 2 ) Effective barrier-height F systematic reduction of the barrier height DF < 0 due to electron density compression at the interface, charge transfer and film rumpling dipole moments cancel each other. (9 x 9 nm 2 ) Effective barrier-height DF < 0 self-limited island growth, surface potential driven by the local interface register barrier enhancement at island edges. DF ~ 0 N. Nilius et al., Phys. Rev. B 86 205410 (2012).

Induced polarity + lattice mismatch modulation of surface potential 1ML FeO(111)/Pt(111) Au@FeO(111)/Pt(111) 2D Lattice of charged Au monomers DFT+U (VASP) Pt(111) Au + O Fe Au - Pt(111) Phys. Rev. Lett. 101, 026102 (2008) Phys. Rev. B 80, 125403 (2009) O@FeO(111)/Pt(111) Embedded islands of FeO 2 nano-oxide Electrostatic potential above the surface. STM topographic image 4500 mv, 0.1 na J. Phys. Chem. C 114, 21504 (2010) Angew. Chem. Int. Ed. 49, 4418 (2010)

Lattice mismatch oxide film distortion DFT+U (VASP) HF+PES (PHFAST) steering the growth of metal ad-particles Well Ordered Particle Ensembles bond expansion bond contraction 1 ML 3 ML 6 ML Fe particles 3ML MgO(001) film Modulation of Potential Landscape 6 ML MgO (100)/Mo Lattice Distortion Mo(001) surface Adv. Func. Mater. (2013) Metal/Oxide Coincidence Lattice

PLATES Institut des NanoSciences de Paris Edge polarity: low dimensionality + V PLATE (d) ~ d Linear divergence DV WIRES H H + R 1 V WIRE (d) ~ ln d Log divergence Rock-salt lattice a= 4 Å, point charges q = ± 2 Electrostatic potential on anions.? H J. Goniakowski, C. Noguera, Phys. Rev. B 83 115413 (2011).

Edge polarity: finite size FINITE WIRES H H + DV constant L < H H Rock-salt lattice a= 4 Å, point charges q = ± 2 Electrostatic potential on anions. H >> L: V WIRE (d) ~ ln 1/d & DV, DV ~ ln L DV DV DV constant H > L no divergence as function of object size H log divergence as function of size of the polar edge L DV J. Goniakowski, C. Noguera, Phys. Rev. B 83 115413 (2011).

Compensation of edge polarity: metallization Unsupported 1 ML MgO(111) nano-ribbons zig-zag edges LDOS DFT GGA (VASP) E F zig-zag edges arm-chair edges Overlap of edge valence and conduction bands: * edge metallization; * R 1 /(R 1 +R 2 ) = 1/3 for zig-zag edges. Change of ion charges % 1ML MgO(111) Change of ion charges % 1ML MgO(111) J. Goniakowski, L. Giordano, C. Noguera, Phys. Rev. B 87 035405 (2013).

Edge polarity: compensation mechanisms 1 ML MgO(111) nano-ribbons with zig-zag edges: free Au(111)-supported DFT GGA (VASP) + Bader Edge metallization Edge reconstruction Edge hydroxylation Change of ion charges wrt 1ML MgO(111) Change of Au charges wrt clean Au(111) Au(111) substrate efficiently screens the non-neutrality of dry unreconstructed and of fully hydroxylated zig-zag edges. J. Goniakowski, L. Giordano, C. Noguera, Phys. Rev. B 87 035405 (2013).

Edge polarity: relative edge/island stability Au(111)-supported 1ML MgO nano-ribbons: Polar: P(100) Z(111) DFT GGA (VASP) P(100) (1x2) dry A(111) dry Z(111) (1x1) dry NP(100) dry Non-polar: NP(100) A(111) 2D Wulff shapes : (100) (100) (111) (100) dry dry/hydrox. hydrox. J. Goniakowski, L. Giordano, C. Noguera, Phys. Rev. B 87 035405 (2013).

Au(111)-supported MgO nano-islands: Y. Pan et al., J. Phys. Chem. C 116 11126 (2012). Summary Mg@550K p O2 = 5x10-6 mbar p H2O < 2x10-10 mbar Mg@450K p O2 = 1x10-6 mbar Mg@300K p O2 = 5x10-7 mbar p H2O > 1x10-9 mbar Effect of film thickness uncompensated polarity and polarity-drivien structural transformations Lattice mismatch + Induced polarity in metal-supported oxide monolayers nano-patterning of structural and electronic characteristics Different polar behaviour in low dimensional and finite-size objects linear/logarithmic divergence in 3D/2D, no divergence in 1D (chains) divergence as function of the smaller structural parameter L or H Compensation of edge polarity screening by the metal substrate / hydroxylation / reconstruction: stability reversal C. Noguera, J. Goniakowski, Chem. Rev. 113, 4073 (2013)

Acknowledgments L. Giordano, G. Pacchioni & F. Guller, A.M. Llois Dipartimento di Scienza dei Materiali, Universita di Milano-Bicocca, Milano, Italy Centro Atomico Constituyentes - San Martin, Argentina Y. Pan, P. Myrach, N. Nilius & S. Benedetti Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany CNR-INFM National Research Center on nanostructures and biosystems at Surfaces, Modena, Italy