Intense Slow Positron Source

Similar documents
Intense Slow Positron Source

Intense Source of Slow Positrons

GBAR Project Gravitational Behavior of Antihydrogen at Rest

POSITRON ACCUMULATOR SCHEME for AEGIS

ATHENA / AD-1. First production and detection of cold antihydrogen atoms. ATHENA Collaboration. Rolf Landua CERN

Plans for a laboratory electron-positron plasma experiment

Possibilities for a Bose-Einstein Condensed Positronium Annihilation Gamma Ray Laser

positron source EPOS - general concept - timing system - digital lifetime measurement

The MePS System at Helmholtz-Zentrum Dresden-Rossendorf and its special Capability for Positronium Lifetime Spectroscopy

EPOS an intense positron beam project at the Research Center Rossendorf

? Physics with many Positrons

The GBAR experiment. Dirk van der Werf

Status of A Positron-Electron Experiment (APEX) towards the formation of pair plasmas

Department of Physics, Techno India Batanagar (Techno India Group), Kolkata , West Bengal, India.

Positron and positronium for the GBAR experiment

The intense, pulsed positron source EPOS at the Research Centre Dresden-Rossendorf

David B. Cassidy. Department of Physics and Astronomy, University of California, Riverside, USA. Varenna, July 09

Antimatter. Jan Meier. Seminar: Experimental Methods in Atomic Physics May, 8th 2007

Fundamental physics with antihydrogen and antiprotons at the AD. Michael Doser CERN

13th International Workshop on Slow Positron Beam Techniques and Applications

Positronium: Old Dog, New Tricks

Analysis of design, verification and optimization of High intensity positron source (HIPOS) at HFR Petten

The intense positron source EPOS at Research Center Rossendorf

The intense Positron Source EPOS at ELBE Radiation Source of Research Center Rossendorf

GBAR principle: cool H + to get ultra- slow H

Emerging science and technology of antimatter plasmas and trap-based beams a

New Concept of EPOS Progress of the Mono-energetic Positron Beam (MePS) Gamma-induced Positron Spectroscopy (GiPS)

Research Center Dresden Rossendorf

The High-Power-Target System of a Muon Collider or Neutrino Factory

Antimatter plasmas and antihydrogen*

Trap-based positron beams

Higgs Factory Magnet Protection and Machine-Detector Interface

Sub-Doppler two-photon laser spectroscopy of antiprotonic helium and the antiproton-toelectron

M. Werner, E. Altstadt, M. Jungmann, G. Brauer, K. Noack, A. Rogov, R. Krause-Rehberg. Thermal Analysis of EPOS components

OVERVIEW OF RECENT WORK ON LASER EXCITATION OF POSITRONIUM FOR THE FORMATION OF ANTIHYDROGEN

Two-stage Rydberg charge exchange in a strong magnetic field

Physics 736. Experimental Methods in Nuclear-, Particle-, and Astrophysics. - Accelerator Techniques: Introduction and History -

A Low Energy Beam Transport Design with high SCC for TAC Proton Accelerator

Experiments with low energy antimatter

Outlook: Application of Positron Annihilation for defects investigations in thin films. Introduction to Positron Annihilation Methods

E. EROGLU, E. PILICER, I. TAPAN Department of Physics, Faculty of Arts and Sciences, Uludag University, Gorukle, Bursa, TURKEY.

Plenary review talk, APS Plasma Physics Division, Chicago IL, Nov. 9, Plasmas as Drivers for Science with Antimatter.

Shielding calculations for the design of new Beamlines at ALBA Synchrotron

Positron Source using Channelling for the Baseline of the CLIC study

CPT ALPHA CPT 2.1 CPT , CERN. TRIUMF Canada s National Laboratory for Particle and Nuclear Physics

2. X-ray Sources 2.1 Electron Impact X-ray Sources - Types of X-ray Source - Bremsstrahlung Emission - Characteristic Emission

ASPECTS OF THE MCMASTER INTENSE POSITRON BEAM FACILITY

The Turkish Accelerator Center (TAC) Project. Bora Ketenoğlu. Department of Engineering Physics Ankara University / TURKEY

Positron Probe Microanalyzer (PPMA) facilities at AIST

Beam Extraction by the Laser Charge Exchange Method Using the 3-MeV LINAC in J-PARC )

Study on Bose-Einstein Condensation of Positronium

O rion. The ORION Facility at SLAC. Bob Siemann AAC Workshop, June 15, 2000

SPIRAL-2 FOR NEUTRON PRODUCTION

Ultrafast X-Ray-Matter Interaction and Damage of Inorganic Solids October 10, 2008

II) Experimental Design

Plans for the creation of the first matter-antimatter (electron-positron) plasmas on Earth

ERL FACILITY AT CERN FOR APPLICATIONS

Positron program at the Idaho Accelerator Center. Giulio Stancari Idaho State University and Jefferson Lab

Physics at Accelerators

In-Flight Fragment Separator and ISOL Cyclotron for RISP

Small Angle Neutron Scattering in Different Fields of Research. Henrich Frielinghaus

New targets for enhancing pb nuclear fusion reaction at the PALS facility

Review of ISOL-type Radioactive Beam Facilities

R&D ON FUTURE CIRCULAR COLLIDERS

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

Experimental neutron capture data of 58 Ni from the CERN n TOF facility

Question 11.1: Find the

Production of HCI with an electron beam ion trap

Introduction to Particle Accelerators & CESR-C

Study of semiconductors with positrons. Outlook:

Reminder : scenarios of light new physics

Characterizations and Diagnostics of Compton Light Source

Motivation. g-spectroscopy deals with g-ray detection and is one of the most relevant methods to investigate excited states in nuclei.

Photon Regeneration at Optical Frequencies

meeting March 8, 2011

minimum wavelength of X-rays produced by 30 kv electrons.

Rb, which had been compressed to a density of 1013

Quadrupole Induced Resonant Particle Transport in a Pure Electron Plasma

E166: Polarized Positrons & Polarimetry

Laser Ion Acceleration: Status and Perspectives for Fusion

novel DIagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork

ENERGY DEPOSITION EFFECTS OF THE X PHOTON BEAM ON THE MIRROR OF PLASMON-X EXPERIMENT AT LI2FE. Francesco Broggi, Luca Serafini

Excitements and Challenges for Future Light Sources Based on X-Ray FELs

Neutronic Design on a Small Accelerator based 7 Li (p, n) Neutron Source for Neutron Scattering Experiments

Proton and neutron radiation facilities in the PS East hall at CERN

Modern Accelerators for High Energy Physics

Positron Annihilation Spectroscopy - A non-destructive method for material testing -

POSITRON AND POSITRONIUM INTERACTIONS WITH CONDENSED MATTER. Paul Coleman University of Bath

Interaction of charged particles and photons with matter

Radiation safety of the Danish Center for Proton Therapy (DCPT) Lars Hjorth Præstegaard Dept. of Medical Physics, Aarhus University Hospital

Introduction to accelerators for teachers (Korean program) Mariusz Sapiński CERN, Beams Department August 9 th, 2012

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

Slow-Positron-Beam Techniques

Positron Annihilation Lifetime Spectroscopy (PALS)

Electron Beam Polarimetry: Status and Prospects. DIS 2005, Madison, April 2005 E. Chudakov (JLab)

Development of the Positron Injector for LEPTA Facility

FACET-II Design Update

The EPOS System (ELBE Positron Source) at Helmholtz Centre Dresden- Rossendorf and first experiments at photovoltaic CIGS layers

IPBI-TN June 30, 2004

DESIGN AND CONSTRUCTION OF LOW ENERGY ELECTRON ACCELERATORS AT SINP MSU

Transcription:

Intense Slow Positron Source Introduction Science & Frontier Technology Production of e + Competition Proposal Request to EPAC ~ 14 m 10 MeV rhodotron target - collector moderator - buffer gas - trap e+ P. Pérez & A. Rosowsky 1

Introduction Our motivation: detect deviation from gravity in P s or Hbar free-fall make a beam of anti-atoms ( CERN expts.) use few pbar (expensive) use manye + E C ~ ev, D E C ~ 1.5 mev e + factory : today s proposal New applications outside this field for Ne + > 10 9 s -1 P. Pérez & A. Rosowsky 2

Making anti atoms Radiative Recombination (RR) ne 10 8 cm 3 p + + e H p + e + Hbar Laser Induced Radiative Recombination (LIRR) p + + e + hν H + 2hν p + e + + hν Hbar + 2hν 3 Body reactions (3BDY) ne 10 9 cm 3 p + + e + e ± H * + e ± p + e + + e ± Hbar * + e ± e + + e + e ± P s * + e ± Charge exchange with Positronium (CXPS) p + + P s H + e + p + P s Hbar + e H + P s H + e + Hbar + P s Hbar + + e SLAC CERN Matter Anti-matter P. Pérez & A. Rosowsky 3

N.Yamanaka & Y. Kino, Phys. Rev. A 65, 062709 P.K. Biswas, J.Phys. B: At. Mol. Opt. Phys. 34 (2001) 4831 p + + Ps H + e + H + Ps H + e + C.M. 20 KeV p (lab) 10 15 cm 2 10 14 Ps at/cm 3 10 4 Hbar + per incident antiproton 20 KeV p (lab) 10 17 cm 2 P. Pérez & A. Rosowsky 4

Transform all e + into P s in less than 1 ns via 3 body reaction: e + + e + e ± P s * + e ± 20 KeV p ± + P s target H/p = Hbar/p = 0.1 In same P s target H + P s H + e + Hbar + P s Hbar + + e H /H = Hbar + /Hbar =10-3 10 14 Ps at/cm 3 10 4 Hbar + per incident antiproton Lifetime (s) e + lifetime in plasma (s) 10 3 10 2 10 1 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12 10-13 10-14 ATHENA 2.5 10 8 cm -3 5 mev 20 mev 1 mev direct annihilation Plasma temperature we will be here! 10 12 10 14 plasma density (cm -3 ) 10 10 10 11 10 12 10 13 10 14 10 15 density (cm-3) P. Pérez & A. Rosowsky 5 1 ns 0.1 ns

Layout scheme Greaves-Surko traps Target : aerogel / Si cristal e + trap ( ~ ev ) p + or p trap ( ~20 kev ) S = 1 mm 2 «= 1200 mm L = 1 cm H, H or Hbar, Hbar + ï Free fall expt. Positronium target : e trap ( ~ ev ) Few 10 12 e ± inside 10-2 cm 3 => P s density ~ 10 14 cm -3 several minutes to fill e+ trap P. Pérez & A. Rosowsky 6

Greaves-Surko trap Ne moderator: Ec < 1 MeV ev N 2 buffer gas : ev mev Penning Malmberg trap Rotating wall UC San Diego (7K) ATHENA : 10 8 e + Project to store 10 15 within 3 years 10 12 10 13 e + P. Pérez & A. Rosowsky 7

Fundamental Physics expts Gravity experiment possible with Ps only High Rydberg states of Ps can live ~ 1ms produce thermal Ps atoms (3 km/s max speed) then excited with Doppler-free two photon techniques Ps atoms focused by mirror and converge on 1 mm spot deflection expected from gravity is 50 mm on a 10 m scale rate of slow positrons needed in order to achieve a 5 s measurement in a week of run is ~ 10 9 s -1 BEC Ps A. P. Mills & P.M. Platzman publications 511 KeV g ray laser 3D imaging of molecules P. Pérez & A. Rosowsky 8

Other research & Applications e + e plasmas Astrophysics Feed stellarator for low energy neutral plasma study Relativistic plasmas study on ms to s time scales Cold & bright e + beams materials study High speed electronics and chips (PALS) Positron microscopy Filling of portable trap with 10 12 e + commercial use (UCSD design) «advanced futuristic» projects : energy storage, USAF shuttle propulsion P. Pérez & A. Rosowsky 9

e + Production and Collection Beam energy/intensity : 10 MeV 2~10 ma Target geometry : thin foil at grazing incidence ( 3 degrees) Probability of first interaction (e + & Xrays) Thermal effects : Xrays leak + IR slab effect Large angle collection and selection < 1 MeV P. Pérez & A. Rosowsky 10

Target (2) Study energy deposit as a function of incidence angle Y e beam section 1 mm x 20 mm LINAC 10 MeV e 3 degree Thickness = D equivalent thickness: D = D / sin 3 0 e+ 3 0 D Z e+ e+ e+ X D Tungsten target 20 mm x 20 mm x 50 µm P. Pérez & A. Rosowsky 11

Kinetic energy at target exit positrons electrons Energy (GeV) Energy (GeV) P. Pérez & A. Rosowsky 12

Energy versus angle Production point At target exit angle Kinetic energy (GeV) Kinetic energy (GeV) P. Pérez & A. Rosowsky 13

Magnetic Bulb B target e + e + e - B B dump x target e + P. Pérez & A. Rosowsky 14

Collection Setup WALL SHIELD MAGNET H1 QUADRUPOLE TARGET DUMP MAGNET H2 HELMOLTZ GUIDING TUBE 00 00 00 11 11 11 20 cm 50 cm 40 cm 1 m count e + here 00 11 11 00 P. Pérez & A. Rosowsky 15

Simulation and engineering x x 10 cm 10 cm z 10 cm P. Pérez & A. Rosowsky 16 z

Positrons y z x P. Pérez & A. Rosowsky 17

electrons x z 10 cm P. Pérez & A. Rosowsky 18

3D view P. Pérez & A. Rosowsky 19

e+ position in (y, z) planes Before 4-poles X = 3 cm X = 200 cm P. Pérez & A. Rosowsky 20

energy versus radius at x = 200 cm positrons Radius (cm) electrons Energy (GeV) Energy (GeV) P. Pérez & A. Rosowsky 21

Positrons radius at x = 200 cm Kinetic energy < 1 MeV All kinetic energies Radius (cm) Radius (cm) P. Pérez & A. Rosowsky 22

Target e - soldering test on Tungsten 50 mm 40 kv / 20 ma on 20 mm 2 not perforated at 15 ma Working hypothesis: 1 k W / cm 2 3100 K Test with high intensity beam from IBA foreseen T rise, evaporation P. Pérez & A. Rosowsky 23

Target (2) Study energy deposit as a function of incidence angle Y e beam section 1 mm x 20 mm LINAC 10 MeV e 3 degree Thickness = D equivalent thickness: D = D / sin 3 0 e+ 3 0 D Z e+ e+ e+ X D Tungsten target 20 mm x 20 mm x 50 µm P. Pérez & A. Rosowsky 24

Target (3) 10 4 e - track length inside targets of 1mm equivalent thickness 10 3 3 0 10 2 90 0 <L> ( cm) ( cm) 3 0 0.11 0.11 rms 90 0 0.53 0.48 10 1-0.5 0 0.5 1 1.5 2 2.5 3 track length (cm) P. Pérez & A. Rosowsky 25

Energy Deposit in 1cm 2 Target E(e - ) = 10 MeV Simulation with GEANT/EGS Power (W) 10000 9000 8000 7000 6000 E=10MeV puissance deposee pour 1mA de e Deposited power for 1 ma - 90 0 Current (ma) 10 2 10 E=10MeV courant d e - pour 1kW puissance deposee I MAX for 1 kw deposited 5000 4000 3000 2000 1000 0 0 1000 2000 3000 4000 5000 4.5 kw/ma 1.7 kw/ma 3 0 1 10-1 0.59 ma 0.22 ma 0 1000 2000 3000 4000 5000 D (mm) D (m m) 90 0 P. Pérez & A. Rosowsky 26 3 0

Production Rate (1) 10 7 electrons on 1 cm 2 target Ne + 25000 22500 20000 17500 E=10MeV nombre de e + a l avant pour 10 7 e - sur la cible e + forward 3 0 Ne + 8000 7000 6000 E=10MeV nombre de e + de moins de 1 MeV a l avant pour 10 7 e - sur la cible Ee + <1 MeV 3 0 15000 12500 5000 90 0 4000 90 0 10000 7500 5000 2500 3000 ~ 15000 / 10 7 = 1.5 10-3 2000 ~ 3500 / 10 7 = 3.5 10-4 1000 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 D (m m) D (m m) P. Pérez & A. Rosowsky 27

Production Rate (2) X 10 9 Ne + (s -1 ) x 10 9 8000 7000 6000 5000 Power deposited in 1 cm 2 target = 1 kw E=10MeV taux de e + a l avant pour 1kW depose dans la cible e + forward Ne + (s -1 ) X x 10 9 9 2000 E=10MeV taux de e + de moins de 1 MeV a l avant pour 1kW depose dans la cible 1800 1600 1400 1200 Ee + <1 MeV 3 0 30 1.4 10 12 4000 1000 3000 2000 1000 800 600 400 90 0 90 0 200 0.6 10 12 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 D (m m) D (m m) P. Pérez & A. Rosowsky 28

Production For 1 cm 2 of target D = 1mm Limit 1 kw / cm 2 90 80 70 Normalization to same number of e - generated 90 0 in units of 10 12 s -1 60 Imax Ne + Ne + (<1MeV) 50 40 3 0 0.58 ma 4.6 1.1 30 3 0 90 0 0.25 ma 2.5 0.55 20 10 0.58 ma 2.3 ma for 4 cm 2 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 x 10-2 1 2 3 4 5 Ee+ (MeV) P. Pérez & A. Rosowsky 29

Collection efficiency Fraction of e + at exit plane inside circle of radius 5 or 2 cm centered on axis 1 r = 5 cm 1 r = 2 cm 0.9 E < 600 KeV 0.9 0.8 with quad 0.8 e 5 0.7 0.6 e 2 0.7 0.6 slit shaped beam 0.5 0.4 E < 1 MeV no quad 0.5 0.4 1 x 4 cm 0.3 0.2 0.3 0.2 2 x 2 cm 0.1 0.1 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4 transverse radius of e + source at target level (cm) P. Pérez & A. Rosowsky 30

Collected Positron Rates (2m from target) e+ produced as much as possible near axis is best for production and collection (e + rates in units of 10 12 s -1 ) R e e + coll = 5 cm rate 5 50 all e + at exit plane forward E <1 MeV 20% 52% 4.2 2.7 40 E < 600 KeV 60% 1.3 30 20 10 0 R < 2 cm R < 5 cm 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 E (MeV) R coll = 2 cm forward E <1 MeV E < 600 KeV 8% 20% 30% e + rate 1.6 1.1 0.6 P. Pérez & A. Rosowsky 31 e 2

Electron and photon fluxes Two possible setups with same e + output Beam and coils on same axis e - Target and downstream coils on same axis e - P. Pérez & A. Rosowsky 32

Fluxes of electrons and photons I = 2.3 ma Setup 1 Setup 2 R = 1 cm 5 W 10 W R = 2 cm 140 W 45 W R = 3 cm 450 W 80 W R = 4 cm 1.5 kw 110 W at exit plane 10 10 Power (kw) 9 8 7 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 Power (kw) 9 8 7 0.25 0.225 0.2 0.175 0.15 0.125 0.1 0.075 6 0.2 0.1 6 0.05 0.025 5 0 200 210 220 230 240 250 260 270 280 5 0 200 210 220 230 240 250 260 270 280 plots for 1 ma 4 3 2 1 0 4 Setup 1 Setup 2 0 50 100 150 200 250 300 X (along coils axis) (cm) X (along coils axis) (cm) P. Pérez & A. Rosowsky 33 3 2 1 0 0 50 100 150 200 250 300

A very first design of a 2D expander/uniformizer F. Meot and T. Daniel, NIM, A 379 (1996) 196-205. b (m) Postprocessor/Zgoubi NoDate... Z (m) vs. Y 0.01 0.005 Z (m) 0.0 -.005 -.01 -.01 -.005 0.0 0.005 0.01 Y (m) x (m) P. Pérez & A. Rosowsky 34

Design differences (1) Rossendorf / Aarhus converter e - extraction lenses trap EPOS design + trap MeV e + W moderator E(decel.) dump 1.5 ev e + E (2-5 kv) converter Proposed design MeV e + e - efficiency Tungsten Neon 10-4 10-2 trap temperature room 7K Ne moderator 1.5 ev e + P. Pérez & A. Rosowsky 35

Design differences (2) Original EPOS design: 40 MeV, 0.25 ma, ~CW Linac Pt or W moderator, 3.5 mm Pt target Neutron activation Collection efficiency before trap 20% Expected Rate before trap 1.6 10 8 s -1 At 10 MeV, 2.5 ma 1mm target = 0.8 10 8 s -1 Proposed design: 10 MeV, 2.5 ma, CW Ne Moderator, thin W target Collection efficiency before trap 20% Expected rate before trap 1.1 10 10 s -1 E (MeV) I(mA) Mod. Activ. L wall Rate 40 0.25 Pt yes 30m 3m 1.6 10 8 10 2.5 W no 3m 2m 0.8 10 8 10 2.5 Ne no 3m 2m 10 10 P. Pérez & A. Rosowsky 36

Other designs Thermal neutron capture: 113 Cd(n,g) 114 Cd s = 26000 barn!! By nuclear research reactor FRM2 in Munich (Germany) can reach 10 10 s -1 Building size: 40 m x 40 m x 30 m P. Pérez & A. Rosowsky 37

Scientific Goals Gravity and spectroscopy with P s H Hbar Astrophysics in vitro 3D molecule imaging P s BEC and 511 KeV Laser Applied technology : positron microscope P. Pérez & A. Rosowsky 38

Proposal: best ingredients.. e + facility : Ne + > 10 9 s -1 ~ 14 m fundamental interaction physics : HEP lab e beam expertise and beam research 10 MeV rhodotron SR radiation control infrastructure Interdisciplinary lab Location near trap development target - collector moderator - buffer gas - trap e+ P. Pérez & A. Rosowsky 39

Ressource Impacts Building : new ~ 2.5 M$ refurbished ~ x00 k$ Target-collection Injection ~ 400 k$ e- machine : Rhodotron ~ 2.5 M$ Linac ~ 300 k$ Infrastructure : 250 kw Water cooling Radiation control, safety Parallel project UC San Diego Moderator Buffer gas trap ~ 500 k$ P. Pérez & A. Rosowsky 40

Requests Winter workshop: Start interdisciplinary community Start SLAC - Saclay project collaboration Trigger other institutes interest EPAC feed back: encourage TDR for june 2004 EPAC P. Pérez & A. Rosowsky 41