Philips Research apple PHILIPS

Similar documents
mobility reduction design rule series resistance lateral electrical field transversal electrical field

MOSFET: Introduction

VLSI Design and Simulation

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Jan M. Rabaey

L ECE 4211 UConn F. Jain Scaling Laws for NanoFETs Chapter 10 Logic Gate Scaling

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

EE115C Winter 2017 Digital Electronic Circuits. Lecture 3: MOS RC Model, CMOS Manufacturing

ECE 342 Electronic Circuits. 3. MOS Transistors

The Devices: MOS Transistors

Chapter 4 Field-Effect Transistors

The Devices. Devices

Today s lecture. EE141- Spring 2003 Lecture 4. Design Rules CMOS Inverter MOS Transistor Model

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

MOSFET Capacitance Model

MOS Transistor I-V Characteristics and Parasitics

Device Models (PN Diode, MOSFET )

Introduction and Background

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

EE 330 Lecture 16. MOS Device Modeling p-channel n-channel comparisons Model consistency and relationships CMOS Process Flow

EEC 118 Lecture #2: MOSFET Structure and Basic Operation. Rajeevan Amirtharajah University of California, Davis Jeff Parkhurst Intel Corporation

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

Lecture #27. The Short Channel Effect (SCE)

EECS130 Integrated Circuit Devices

ECE-305: Fall 2017 MOS Capacitors and Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Device Models (PN Diode, MOSFET )

MOS Transistor Theory

EE410 vs. Advanced CMOS Structures

ECE 546 Lecture 10 MOS Transistors

EKV MOS Transistor Modelling & RF Application

CMOS Inverter (static view)

Long Channel MOS Transistors

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

CHAPTER 5 EFFECT OF GATE ELECTRODE WORK FUNCTION VARIATION ON DC AND AC PARAMETERS IN CONVENTIONAL AND JUNCTIONLESS FINFETS

Impact of parametric mismatch and fluctuations on performance and yield of deep-submicron CMOS technologies. Philips Research, The Netherlands

FLCC Seminar. Spacer Lithography for Reduced Variability in MOSFET Performance

MOS Transistor Theory

1. The MOS Transistor. Electrical Conduction in Solids

V t vs. N A at Various T ox

Lecture 11: MOSFET Modeling

ECE 497 JS Lecture - 12 Device Technologies

Chapter 20. Current Mirrors. Basics. Cascoding. Biasing Circuits. Baker Ch. 20 Current Mirrors. Introduction to VLSI

Fundamentals of the Metal Oxide Semiconductor Field-Effect Transistor

A Multi-Gate CMOS Compact Model BSIMMG

EE105 - Fall 2005 Microelectronic Devices and Circuits

CMPEN 411 VLSI Digital Circuits. Lecture 04: CMOS Inverter (static view)

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Section 12: Intro to Devices

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Lecture 4: CMOS Transistor Theory

MOS Transistor Properties Review

Chapter 5 MOSFET Theory for Submicron Technology

The PSP compact MOSFET model An update

3. Basic building blocks. Analog Design for CMOS VLSI Systems Franco Maloberti

The Intrinsic Silicon

SOI/SOTB Compact Models

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Microelectronics Part 1: Main CMOS circuits design rules

The Physical Structure (NMOS)

EE 330 Lecture 17. MOSFET Modeling CMOS Process Flow

Lecture 5: CMOS Transistor Theory

Fig The electron mobility for a-si and poly-si TFT.

MOS CAPACITOR AND MOSFET

Extensive reading materials on reserve, including

Lecture 04 Review of MOSFET

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

and V DS V GS V T (the saturation region) I DS = k 2 (V GS V T )2 (1+ V DS )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Chapter 13 Small-Signal Modeling and Linear Amplification

ECE 415/515 ANALOG INTEGRATED CIRCUIT DESIGN

ENGR890 Digital VLSI Design Fall Lecture 4: CMOS Inverter (static view)

ELEC 3908, Physical Electronics, Lecture 26. MOSFET Small Signal Modelling

THE INVERTER. Inverter

Nanoscale CMOS Design Issues

VLSI Design The MOS Transistor

Lecture 3: CMOS Transistor Theory

Simple and accurate modeling of the 3D structural variations in FinFETs

BSIM-CMG Model. Berkeley Common-Gate Multi-Gate MOSFET Model

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

Decemb er 20, Final Exam

EE143 LAB. Professor N Cheung, U.C. Berkeley

Quarter-micrometre surface and buried channel PMOSFET modelling for circuit simulation

Lecture 12: MOSFET Devices

MOS Transistor Theory MOSFET Symbols Current Characteristics of MOSFET. MOS Symbols and Characteristics. nmos Enhancement Transistor

Microelectronics Main CMOS design rules & basic circuits

The K-Input Floating-Gate MOS (FGMOS) Transistor

A Compact Analytical Modelling of the Electrical Characteristics of Submicron Channel MOSFETs

University of Toronto. Final Exam

! MOS Capacitances. " Extrinsic. " Intrinsic. ! Lumped Capacitance Model. ! First Order Capacitor Summary. ! Capacitance Implications

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

EE 230 Lecture 31. THE MOS TRANSISTOR Model Simplifcations THE Bipolar Junction TRANSISTOR

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Fig. 1 CMOS Transistor Circuits (a) Inverter Out = NOT In, (b) NOR-gate C = NOT (A or B)

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

EE 466/586 VLSI Design. Partha Pande School of EECS Washington State University

JFET/MESFET. JFET: small gate current (reverse leakage of the gate-to-channel junction) More gate leakage than MOSFET, less than bipolar.

Transcription:

c Electronics N.V. 1997 Modelling Compact of Submicron CMOS D.B.M. Klaassen Research Laboratories The Netherlands Eindhoven,

contents accuracy and benchmark criteria new applications í RF modelling advanced process technologies í new physical phenomena í process control and parameter statistics conclusions

need for standardization continuing series of SEMATECH Compact Model Workshops è accuracy and benchmark criteria compact models èand their parametersè í vital link in the circuit simulation chain interface between í technology engineers and circuit designers foundries and design houses qualitative & quantitative benchmark tests for compact models è accuracy evaluation of public-domain analog compact MOS models í BSIM3v3 from UC Berkeley èseptember 1995è í MOS MODEL 9 from èdecember 1993 in public domainè

mean deviation èèè 1 N NX I meas I meas, I sim linear region subthreshold region saturation region output conductance substrate current accuracy and benchmark criteria i=1

1 N accuracy and benchmark criteria mean deviation [%] 30 output conductance 10 mean deviation èèè NX 30 subthreshold I meas I meas, I sim i=1 10 3 1 0.8 0.5 0.35 gate length [micron] saturation linear MOS MODEL 9 BSIM3 averaged over whole geometry range

present-day compact models: accurate I-V modelling è process technologies down to 0.35 çm for new applications challenges from new applications? DP bipolar 1 µm NPN MEXTRAM CMOS 0.25µm N-channel CMOS 0.5 µm N-channel MOS MODEL 9

Vanoppen et al., IEDM'94 Klaassen et al., AACD'96 new applications RF circuit design in mainstream CMOS IC-process foundries supply compact model parameters for IC-processes public-domain analog compact MOS models literature on high-frequency verication of compact MOS models í MOS MODEL 9

air coplanar high-frequency probes ground-signal-ground conguration in special MOS structures common source-bulk conguration in new applications 200 um RF measurements ground ground bulk two-port S-parameter measurements HP8510B network analyzer 200 um on wafer signaal 1 signaal 2 gate drain source ground ground S- to Y-parameter conversion de-embedding procedure for parasitics

new applications: RF simulations intrinsic device: MOS model 9 : DC-parameters + oxide capacitance Drain Port 1 Gate R gate C gdo C gso C jun,d C jun,s R bulk Port 2 Source Bulk extrinsic elements: resistances: R ; R gate bulk capacitances: overlap : Cgd0 ; C gs0 junction : C jun,d ; C jun,s

common SB conguration Z in ç 1! C e gg j N-ch. 40è1 and 100è1 1 çm CMOS èv dd = 5 V è V ds = 5:0 V ; V gs = 2:0 V in = v in i in Z 5 ëdistributed" parallel segments Iout new applications Iin + Vin input impedance + R g

common SB conguration out i in v m! 2 R gc e dg C e gg, j! ç g mr gc e gg + C e ç dg, g,!r gc e gg 1+ N-ch. 40è1; 1 çm CMOS èv dd = 5 V è V ds = 4:0 V ; V gs = 4:0 V 2 3 L ç 2; poly and W L ç 2; poly Iout new applications Iin + Vin transconductance ç W R g = 0,

è maximum available power gain G max N-ch. 40è2; 1 çm CMOS èv dd = 5 V è V ds = 5:0 V ; V gs = 2:0 V N-ch. 20è0.5; 0.5 çm CMOS èv dd = 3:3 V è V ds = 3:5 V ; V gs = 3:5 V symbols: measurements lines: simulations è phase output conductance new applications bulk resistance bulk resistance í with - - - without

new applications RF applications requirements for compact models í accurate charge model í junction and overlap capacitances í gate and bulk resistance è MOS MODEL 9 gives an accurate description of HF behaviour

present-day compact models accurate process technologies down to 0.35 çm for velocity overshoot non-local carrier heating gate tunnelling... advanced process technologies possible requirements for future process technologies í incorporation of new physical phenomena í process control and parameter statistics

new physical phenomena A.H. Montree et al., ESSDERC'96: optimized I-line photolithography dry etching of BARC 5.5 nm gate-oxide mean deviation [%] 30 output conductance LOCOS eld isolation advanced retrograde well twin shallow junction extensions 10 double avoured poly TiSi 2 salicidation 30 subthreshold 10 saturation 3 linear 1 MOS MODEL 9 BSIM3 0.8 0.5 0.35 0.25 gate length [micron] 0.25 çm process 18 geometries

L poly = 0:18 çm è L e = 0:13 çm è 350 nm LOCOS 4 nm gate-oxide 200 nm polysilicon + 40 nm TEOS E-beam patterning, spacer formation, SèD implant silicidation new physical phenomena TEOS spacers J. Schmitz et al., ESSDERC'96: TiSi2 Gate TiSi2 Source P-type wafer Pockets (optional) Drain poly etch HClèHBr shallow drain extension implant è V supply = 1:8 V

new physical phenomena: N-channel L e = 0:13 çm linear region saturation region measurements symbols: MOS MODEL 9 lines:

new physical phenomena: N-channel L e = 0:13 çm subthreshold region output conductance measurements symbols: MOS MODEL 9 lines:

MOS MODEL 9 describes down to L e = 0:13 çm devices no need to take new phenomena è velocity overshootè èe.g. new physical phenomena: N-channel L e = 0:13 çm all physical eects well-modelled into account avalanche generation measurements symbols: MOS MODEL 9 lines:

present-day compact models will be accurate è process technologies down to 0.18 çm for new physical phenomena mean deviation [%] 30 output conductance 10 30 10 3 1 subthreshold saturation linear MOS MODEL 9 0.8 0.5 0.35 0.25 0.18 gate length [micron] BSIM3

ç, V Tè V ds, èvgs saturation current gs =V ds =V supply è èv ç 1 + new physical phenomena mobility reduction 4 series resistance minimum-length devices 3 2 lateral electrical field 1 transversal electrical field 1.0 0.8 0.5 0.35 0.25 0.18 design rule contributions almost è constant technology scaling ç 2 ç ds V I ds = 2 F èvgs ; V ds ;R seriesè

process control & parameter statistics SIA roadmap... supply voltage [V] 5 4 3 2 1 0 1.0 0.7 0.5 0.35 0.25 0.18 0.13 gate length [micron]... rapidly decreasing supply voltage

process control & parameter statistics supply voltage [V] 4 CIRCUIT 3 2 delay power... 1 0 0.35 0.25 0.18 0.13 gate length [micron] DEVICE MM9 W/L arbitrary variation threshold voltage [mv] VTO K 80 60 θ γ PROCESS 40 20 fingerprinting tox Dvt temp... 0 0.35 0.25 0.18 0.13 gate length [micron]

control & parameter statistics process process technology IC design implantations anneals oxidations... EoL measurements threshold voltage current drive subthreshold swing... circuit performance compact model parameters threshold voltage gain factor body-effect factor...

process control & parameter statistics ëdirect extraction" Ids curve tting Vsb1(1)=0V Vsb1(2) Vgate(3) Vsb2(1) Vsb2(2) Vgate(2) Vgate(1) Vt0 Vgs èv gs, V Tè V ds + ç1 èvgs, V Tè 1 I ds =

process control & parameter statistics W = L = 10 çm worst 3 different V -implants t 3 different V -implants t best common threshold-adjust implantation for n- and p-channels

3 3 3 process control & parameter statistics 0 slow fast -3-3 0 333 W = L = 10 çm parameter correlations have to taken into account be è principal components devices with arbitrary geometry? è process block

0.8 çm process intra-batch spread of process control & parameter statistics M.J. van Dort et al., IEDM'95: currents of saturation n- and p-channels minimum-length 11.000 samples

distribution gate delay 21-stage ring oscillator process control & parameter statistics CIRCUIT delay power... DEVICE MM9 W/L arbitrary VTO K θ γ PROCESS fingerprinting tox Dvt temp... 2000 samples

Experiments Mizuno et al., í í Eisele et al., process control & parameter statistics L W source W dep drain IEEE TED 41, 2216 è1994è IEDM'95, 67 è1995è = L = 0:25 çm W = 2 10 17 cm,3 N + dep ç 1000; n p ndep ç 30 + uctuations are of the order stochastic of several percents

process control & parameter statistics How do these intrinsic variations aect device performance?

due to dopant uctuations spread in increased process control & parameter statistics P.A. Stolk et al., IEDM'96: threshold voltage í leakage current í subthreshold swing í linear current í

increased spread in threshold voltage í process control & parameter statistics extract compact model parameters í gain factor subthreshold-slope parameter í ëtransition" parameter í í mobility reduction parameter

process control & parameter statistics correlations study parameters... between

control & parameter statistics process set of I-V curves parameter extraction I lin +_ σ I lin compact model parameters V TO +_ σ V ; TO β+_ σ β ; θ 1 +_ σ θ 1 ;... predictability

present-day compact models will be accurate process technologies down to 0.18 çm for incorporation of parameter statistics in circuit simulation crucial obtain a realistic design window to advanced process technologies è fast parameter extraction methods essential!

Technology Characterisation & Modelling Group Microelectronics Research Centre, Ireland National acknowledgements many colleagues... í Research Laboratories í Semiconductors JESSIèESPRIT Project ADEQUAT+

interface between foundries and design houses í accuracy and benchmark criteria í accurate charge model í incorporation of parasitic elements í present-day compact models will be accurate down to 0.18 çm è incorporation of parameter statistics í summary & conclusions standardization eorts è present-day compact models èi-vè accurate down to 0.35 çm RF applications require advanced process technologies è evolutionary development of present-day compact models