Lecture 8: Ballistic FET I-V

Similar documents
Lecture 3: Transistor as an thermonic switch

Lecture 6: 2D FET Electrostatics

EECS130 Integrated Circuit Devices

Lecture 1 Nanoscale MOSFETs. Course Structure Basic Concepts (1-38)

Application II: The Ballistic Field-E ect Transistor

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

ECE-305: Fall 2017 MOS Capacitors and Transistors

MOSFET Model with Simple Extraction Procedures, Suitable for Sensitive Analog Simulations

ECE 305: Fall MOSFET Energy Bands

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

Scaling Issues in Planar FET: Dual Gate FET and FinFETs

Metal-oxide-semiconductor field effect transistors (2 lectures)

Microsystems Technology Laboratories, MIT. Teledyne Scientific Company (TSC)

Long-channel MOSFET IV Corrections

EE105 Fall 2014 Microelectronic Devices and Circuits. NMOS Transistor Capacitances: Saturation Region

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

Simple Theory of the Ballistic Nanotransistor

MOS Capacitor MOSFET Devices. MOSFET s. INEL Solid State Electronics. Manuel Toledo Quiñones. ECE Dept. UPRM.

The Devices: MOS Transistors

The Gradual Channel Approximation for the MOSFET:

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture 10 Charge Carrier Mobility

Supporting information

Transistor Noise Lecture 10 High Speed Devices

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

Lecture 11: MOSFET Modeling

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Technische Universität Graz. Institute of Solid State Physics. 11. MOSFETs

Lecture 12: FET AC Properties

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Drift-diffusion model for single layer transition metal dichalcogenide field-effect transistors

The Devices. Devices

Integrated Circuits & Systems

Nanoscale CMOS Design Issues

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 04 Review of MOSFET

EE105 - Fall 2006 Microelectronic Devices and Circuits

Technology Development for InGaAs/InP-channel MOSFETs

Typical example of the FET: MEtal Semiconductor FET (MESFET)

The Devices. Jan M. Rabaey

Quantum Phenomena & Nanotechnology (4B5)

Appendix 1: List of symbols

Lecture Outline. ESE 570: Digital Integrated Circuits and VLSI Fundamentals. Review: MOS Capacitor with External Bias

Spring Semester 2012 Final Exam

MOS Transistor I-V Characteristics and Parasitics

Lecture 18 Field-Effect Transistors 3

Lecture #25. Due in class (5 PM) on Thursday May 1 st. 20 pt penalty for late submissions, accepted until 5 PM on 5/8

Electrostatic Single-walled Carbon Nanotube (CNT) Field Effect Transistor Device Modeling

Device Models (PN Diode, MOSFET )

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

ESE 570: Digital Integrated Circuits and VLSI Fundamentals

Lecture #27. The Short Channel Effect (SCE)

Erik Lind

Section 12: Intro to Devices

Towards a Scalable EKV Compact Model Including Ballistic and Quasi-Ballistic Transport

Lecture 5: CMOS Transistor Theory

Lecture 12: MOSFET Devices

Schottky diodes. JFETs - MESFETs - MODFETs

EE5311- Digital IC Design

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

Lecture 8 - Carrier Drift and Diffusion (cont.) September 21, 2001

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

ECE 145A/218A Power Amplifier Design Lectures. Power Amplifier Design 1

III-V CMOS: What have we learned from HEMTs? J. A. del Alamo, D.-H. Kim 1, T.-W. Kim, D. Jin, and D. A. Antoniadis

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

Device Models (PN Diode, MOSFET )

Sub-Boltzmann Transistors with Piezoelectric Gate Barriers

Semiconductor Physics Problems 2015

MOS Transistor. EE141-Fall 2007 Digital Integrated Circuits. Review: What is a Transistor? Announcements. Class Material

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Announcements. EE141- Fall 2002 Lecture 7. MOS Capacitances Inverter Delay Power

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

FIELD-EFFECT TRANSISTORS

Electrical Characteristics of MOS Devices

Lecture 15 OUTLINE. MOSFET structure & operation (qualitative) Review of electrostatics The (N)MOS capacitor

University of Pennsylvania Department of Electrical Engineering. ESE 570 Midterm Exam March 14, 2013 FORMULAS AND DATA

in Electronic Devices and Circuits

4.2 Molecular orbitals and atomic orbitals Consider a linear chain of four identical atoms representing a hypothetical molecule.

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

ECE 305 Fall Final Exam (Exam 5) Wednesday, December 13, 2017

Lecture 35: Introduction to Quantum Transport in Devices

Lecture 28 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 18, 2007

8. Schottky contacts / JFETs

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

ECE315 / ECE515 Lecture-2 Date:

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Subbands and quantum confinement

Decemb er 20, Final Exam

Quantum Corrections for Monte Carlo Simulation

EE 560 MOS TRANSISTOR THEORY PART 2. Kenneth R. Laker, University of Pennsylvania

Current mechanisms Exam January 27, 2012

MOSFET: Introduction

N Channel MOSFET level 3

Transcription:

Lecture 8: Ballistic FET I-V 1

Lecture 1: Ballistic FETs Jena: 61-70

Diffusive Field Effect Transistor Source Gate L g >> l Drain Source V GS Gate Drain I D Mean free path much shorter than channel length Diffusive transport drift and diffusion x x J qnn µ n =qt/m * ' x, t C U x 3 q' ch U CH ox x x U 0 1 1 What happens when an electron travels through the channel without any scattering events? CH U CH =V GS V T -V CS (x) 1 ch c qn L n

Diffusive Field Effect Transistor Source Gate Drain L>>l 0 L<<l 0 Mean free path much shorter than channel length Diffusive transport drift and diffusion Mean free path much longer than channel length Ballistic transport Fully ballistic transport will give the upper limit of a transistor s performance! How do we calculate the ballistic current flowing through a FET? 4

Top of the barrier limited transport t t E f,s E f,s E E(0) E f,d qv ds E E f,d E v k k k * m 1 E k d J x = 0 dx k E 1 k k We model the source/drain regions as electron reservoirs Electrons with positive k-values moves right Electrons with negative k-values moves left 5

Top of the barrier limited transport E f,s E(0) qv ds E f,d E v k k k E 0 * m Ek k E Injected from the source: E f,s -E(0) Injected from the drain: E f,d -E(0) E f,s More electrons moving towards the source net electron current! E f,d E(0) k E(0) is mainly set by changing the gate voltage! 6

Net Electron current minute excercise E f,s qv ds E(0) E f,d Sketch the net electron current as V ds is increased! For simplicity: Assume that E(0) are independent of V ds! 0 ~ qe f,d 7 V ds

D Ballistic FET number of electrons n s = m πħ E C f 1 E f E de η Fs = E fs E 0 kt n s = N D [F 0 η F1 + F 0 (η F )] η Fd = E fs E 0 qv DS kt N D = m kt πħ C q = q m /(πħ ) E f,s Above threshold: n s C G (V GS V T ) 1 = 1 + 1 + 1 C G C ox C q C C E(0) qv ds E f,d 8

D Ballistic FET number of electrons n s = N D [F 0 η Fs + F 0 (η Fd )] N D = m kt πħ k x + k x E f,s E(0) E f,d V DS = 0V n s C G (V GS V T ) 1 = 1 + 1 + 1 C G C ox C q C C V DS >> 0V n s C G (V GS V T ) 1 = 1 + + 1 C G C ox C q C C MOS-limit: C ox << C q : n s = n s + + n s stays constant for all V DS n s + increases with V DS. η Fs must increase, until V DS is large so that n s 0. E f,s E(0) qv ds E f,d 9

D Ballistic FET - Current I J = q ħ π dk xdk y k E k f 0 E k E fs J : Current in x direction. (+k x ) kx E k = ħ k x m k x + k y = ħ m k x = ħ m k cos θ η Fs = E fs E 0 k B T η Fd = E fs E 0 qv DS k B T J = qħ π m k=,θ= π k=0,θ= π kcos θ k 1 + exp E k E fs k B T dkdθ E = ħ k m k = m E ħ de = ħ k E m dk η = k B T 10

D Ballistic FET - current J = q m kt 3 π ħ 0 η 1 + e η η FS dη π F 1/ η fs J = q m kt 3 π π ħ F 1/ η fs = J 0 D F 1/ η fs η Fs = E fs E 0 k B T η Fd = E fs E 0 qv DS k B T J 4 0 J D 3 π η fs 3 = q m π ħ 4 3 E fs 3/ Degenerate: E fs >> J = q m kt 3 π π ħ F 1/ η fd = J 0 D F 1/ η fs v Drain to source current d 11

D Ballistic FET - Saturated Current We need to determine η Fs to calculate I D qn s C G (V GS V T ) In saturation: F 0 η Fd 0 and V GS >>V T qn s = qn D [F 0 η Fs + F 0 η Fd ] qn D η Fs = C q kt q η Fs η Fs = C G C q V GS V T V Th J J 4 0 J D 3 π η fs 3 I W = C G 8ħ V GS V T 3m qπ C G qn s < v x > V GS V T Since only +k x states are occupied. C q = C q should be used for the calculation of C G. 1

D Ballistic FET - I(V DS,V GS ) General (approximate) solution for V GS >V T Assuming MOS-limit: C ox << C q qn s = qn D F 0 (η) = ln(1 + e η ) [F 0 η Fs + F 0 η Fd v d ] = C G (V GS V T ) Valid if C G C G : C G <<C q C G C q V GS V T V Th = η G = ln e η G = ln 1 + e η Fs 1 + e η Fs v d η Fs = ln 1 + e v d + 4e v d e η G 1 1 + e v d ln 0 J = J D F1 η fs F1 η fs v d J 0 D 4/3 π η 1.5 Fs η Fs v 1.5 d Analytical but complicated expression for the ballistic current! 13

D Ballistic FET - Current II 0 < V GS < 0.4 V C q = 0.05 F/m C G = 0.01 F/m Similar shape as diffusive transport : but I (V GS 14

Back Scattering 1-T T T λ 0 L G + λ 0 Non-degenerate limit Small V DS L G λ 0 µ n kt L q 1 v th = kt v th m π I W = C G 8ħ V GS V T 3m qπ C G V GS V T No scattering I W λ 0 8ħ C L G + λ G V GS V T 0 3m qπ C G V GS V T Approximate effect of scattering! This relates the mobility (long channel property) to the quasi-ballistic current! 15

D Ballistic FET current Fully Ballistic t w =10 nm t ox =4 nm (er=14) m*=0.03 µ n =3000 cm /Vs v sat =10 7 cm/s V GS -V T =0.5V Experimental L g =40 nm In 0.7 Ga 0.3 As HEMT I DS ~ 1 ma/µm (IEDM 011) (Lower I DS - Source/Drain resistance) 16

Below V T : Sub threshold current J = q m kt 3 π π ħ F 1/ η fs = J 0 N D = m kt D F 1/ η fs πħ Below threshold: n s 0, so that ψ s moves 1:1 with the applied V GS! (If no short channel effects) I D = q N D Wv T F 1/ η Fs F 1/ η Fs v d qw N D v T F 1/ η Fs I D = qw N D v Te q kt V GS V T If V DS large v T = kt πm Inverse subthreshold slope: SS = d dv GS log 10 I D 1 =.3 kt q = 60mV/decade Diffusive Transport gives the same subthreshold slope 17