From JYFLTRAP to MATS

Similar documents
Mass measurements of n-rich nuclei with A~70-150

MEASUREMENTS FOR THE R PROCESS AT IGISOL. Anu Kankainen University of Jyväskylä

Precision mass measurements of radioactive nuclei at JYFLTRAP

Novel uses of Penning traps in nuclear structure physics. Mass measurements. Thanks to many colleagues at ISOLTRAP, SHIPTRAP and JYFLTRAP

Lecture Series: Atomic Physics Tools in Nuclear Physics IV. High-Precision Penning Trap Mass Spectrometry

Nuclear Structure Studies with Penning Traps

Nuclear Masses and their Importance for Nuclear Structure, Astrophysics and Fundamental Physics

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

Precision Nuclear Mass Measurements Matthew Redshaw Exotic Beam Summer School, Florida State University Aug 7 th 2015

Accelerated radioactive beams and the future of nuclear physics. David Jenkins

ECT* Trento The Lead Radius. Precision measurements of nuclear ground state properties for nuclear structure studies. Klaus Blaum

Precision mass measurements of neutron-rich nuclei between N=50 and 82

Laser spectroscopy and resonant laser ionization atomic tools to probe the nuclear landscape. Iain Moore University of Jyväskylä, Finland

Atomic Physics with Stored and Cooled Ions

Nuclear astrophysics: experiments

FAIR. Reiner Krücken for the NUSTAR collaboration

'Nuclear Structure of the Neutron Rich Region around Z=28 towards and beyond N=50' WOG workshop Leuven March 9 11, 2009 Mark Huyse

Laser Spectroscopy on Bunched Radioactive Ion Beams

Pursuing mass resolving power of 10 6 : Commissioning of IGISOL 4

FISSION YIELD MEASUREMENTS WITH JYFLTRAP

In-trap decay and trap-assisted decay spectroscopy at ISOLTRAP

GSI. Overview of last years activities: technical developments and investigations mass measurements. TRAPSPEC related tasks and issues

LEAP, Kanazawa, Japan 2016

The Super-FRS Project at GSI

Shell and pairing gaps: theory

FAIR - A Status Report + A Concept for Collinear Spectroscopy at TRIGA Mainz. Wilfried Nörtershäuser GSI Darmstadt & Universität Mainz

The new operation modes of JYFLTRAP. tio. M ore

Sunday. Monday Thursday Friday

How could Penning-Trap Mass Spectrometry. be useful to. Neutrino Physics? Sergey Eliseev Max-Planck-Institute for Nuclear Physics Heidelberg

TAMU-TRAP facility for Weak Interaction Physics. P.D. Shidling Cyclotron Institute, Texas A&M University

Introduction to REX-ISOLDE concept and overview of (future) European projects

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

JINA. Address open questions by working on the nuclear physics and the astrophysics

Experiments with rare-isotope beams Ground-state properties. Wednesday. Nuclear masses Ground-state halflives. Friday

GANIL / SPIRAL1 / SPIRAL2

Towards TASCA

Answering Questions of Nuclear and Astrophysics with Mass Measurements from ISOLTRAP

Bertram Blank CEN Bordeaux-Gradignan. Germanium detector calibration experimental studies: b decay mirror b decay future work

Constraining Astrophysical Reaction Rates with Transfer Reactions at Low and Intermediate Energies

From few-body to many-body systems

Andree Welker ENSAR2 Town Meeting Groningen

In-gas cell laser spectroscopy of neutron-deficient silver isotopes

Nuclear Spectroscopy of Very Neutron-rich rich Ag and Cd Isotopes

A taste of Proton-rich nuclei. David Jenkins

Recent NUSTAR Experiments with Relativistic Uranium Beams

Isospin-symmetry breaking in nuclei around the N=Z line

How Nature makes gold

Physics with stopped beams at TRIP-TRAP Facility. P.D. Shidling Cyclotron Institute, Texas A&M University

Exotic Nuclei II. Neutron-rich nuclides. Michael Thoennessen FRIB/NSCL Michigan State University

Relativistic Radioactive Beams as a Tool for Nuclear Astrophysics

Mass measurements needed for neutrino physics

Atomic Physics with Stored and Cooled Ions

This is an electronic reprint of the original article. This reprint may differ from the original in pagination and typographic detail.

High-resolution Study of Gamow-Teller Transitions

D. Frekers. Putting together the pieces of the puzzle in bb-decay n. TRIUMF May Gentle Touch: q tr = 0 l = 0.

Beta-decay. studies with proton-rich. rich nuclei. Bertram Blank. Université Bordeaux 1 / CENBG

The Ring Branch. Nuclear Reactions at. Mass- and Lifetime Measurements. off Exotic Nuclei. Internal Targets. Electron and p. Experiments: Scattering

Precision Penning Trap Experiments with Exotic Ions

Penning-trap-assisted decay spectroscopy studies of neutron-rich nuclei in the A = 110 region

Trap assisted decay spectroscopy setup at ISOLTRAP

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

JYFL Accelerator Laboratory

Atomic Physics with Stored and Cooled Ions

Erice, September, 2017,

From FRS to Super-FRS. Martin Winkler

Studies of Gamow-Teller transitions using Weak and Strong Interactions

Precision Penning Trap Experiments with Exotic Ions

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Some results obtained with Gogny force included in HFB, QRPA as well as in configuration mixing GCM like approach

Gamma-neutron competition above the neutron separation energy in betadelayed

Coexistence phenomena in neutron-rich A~100 nuclei within beyond-mean-field approach

An improved nuclear mass formula: WS3

Nuclear physics: Magdalena Kowalska CERN, PH Dept.

"SHIPTRAP, HITRAP and MATS: Status and Plans for ion trap projects at GSI and FAIR"

Coefficients and terms of the liquid drop model and mass formula

Perspectives for Penning Trap Mass Measurements of Super Heavy Elements

DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 3/2007 PRECISION MASS MEASUREMENTS OF NEUTRON-RICH NUCLIDES AROUND A = 100

QRPA calculations of stellar weak decay rates

QRPA calculations of stellar weak-interaction rates

Standard Model and ion traps: symmetries galore. Jason Clark Exotic Beam Summer School July 28 August 1, 2014

Se rp-process waiting point and the 69

EVOLUTION OF SHELL STRUCTURE

Ion traps, atomic masses and astrophysics. Outline. Positive ray parabolas. British beginnings

p-n interactions and The study of exotic nuclei

arxiv: v1 [nucl-th] 12 Jul 2012

Beta Decay Studies in nuclear structure

Fission fragment mass distributions via prompt γ -ray spectroscopy

Beyond mean-field study on collective vibrations and beta-decay

arxiv: v1 [nucl-ex] 17 Apr 2008

Utilization of Intense Rare Isotope Beam at KoRIA

Measurements of ground-state properties for nuclear structure studies by precision mass and laser spectroscopy

Gamow-Teller Transitions studied by (3He,t) reactions and the comparison with analogous transitions

Mapping Low-Energy Fission with RIBs (in the lead region)

STRUCTURE FEATURES REVEALED FROM THE TWO NEUTRON SEPARATION ENERGIES

arxiv: v1 [astro-ph] 9 Dec 2008

DSAM lifetime measurements at ReA - from stable Sn to exotic Ca. Hiro IWASAKI (NSCL/MSU)

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

Experiments with exotic nuclei I. Thursday. Preliminaries Nuclear existence Decay modes beyond the driplines Ground-state half-lives.

Transcription:

From JYFLTRAP to MATS Ari Jokinen Department of Physics, University of Jyväskylä Helsinki Institute of Physics 1) Introduction to trap projects 2) JYFLTRAP at IGISOL 3) JYFLRAP physics program; summary, couple of examples, outlook 4) MATS at FAIR

Research areas and relevant precision (atomic masses and/or Q-values) Nuclear structure (10-100 kev) Global Global correlations (100 (100 kev) kev) Local Local correlations (10 (10 kev) kev) shell shell structure, spin-orbit interaction, pairing, pairing, collectivity Drip-line phenomena, halos, halos, isomers (1 (1 kev) kev) Nuclear astrophysics ( ( 1 kev) Charge symmetry in in nuclei ( ( 1 kev) Isospin Isospin multiplets Coulomb energy energy differences Test Test of of Standard Model ( ( 100 ev) ev) Nuclear decay. decay. Electroweak interaction CVC CVC theory theory and and unitarity of of CKM CKM matrix matrix Double Double decay decay

Penning trap projects worldwide Penning trap projects are: - complementary - producing plenty of new data Type of reaction ISOLTRAP CPT SHIPTRAP JYFLTRAP LEBIT TITAN SMILETRAP HITRAP MATS/FAIR Conv. ISOL X X Fusion evap. reaction IGISOL X X Fragmentation X X X Highly-charged ions X X X X X Stable ions X X X Trap-assisted spectroscopy X X D. Lunney, ENAM2008

Penning trap projects worldwide Penning trap projects are: - complementary - producing plenty of new data SHIPTRAP rp-nuclei JYFLTRAP 76 Ge SMILETRAP N-rich 46 V CPT 68 As, 64 Ge 22 Mg 26 Al ISOLTRAP LEBIT 38 Ca D. Lunney, ENAM2008 in healthy competition: New techniques New applications Cross-checking

JYFLTRAP setup @ IGISOL Cyclotron beam target Dipole magnet M/ M ~ 500 FC FC RFQ cooler Transfer line FC Purification trap Precision trap FC MCP } } Ion guide 30 kv Electrostitic switchyard Si 30 kv 7 T magnet Si Spectroscopy setup Counts 1400 1200 1000 800 600 400 200 0 FWHM = 20 Hz M/ M = 145 000 101 Y Purification scan TOF-resonance in Precision trap Basic equations for mass determination 101 Zr 101 Nb 101 Mo 120 Pd f c f f c,ref c 1 2 q m ref B m - me m - m e 1064700 1064750 1064800 1064850 1064900 Frequency [Hz]

JYFLTRAP program, overview Neutron-deficient nuclei: 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Rp and p-processes, particle decaying 55 isomers ( 94 Ag, 53 Co), S p ( 93 Rh), SnSbTecycle, 55 50isospin symmetry, mirror transitions, 50 45 45 40 40 Z 35 30 25 20 15 10 Precise Q-values: Neutron-rich nuclei: 20 N=50 and Z=28 shell gaps, N=40 sub-shell closure, onset of deformation, evolution of collectivity in 15 transitional nuclei, 10 10 15 20 Superallowed 25 30 35 beta 40 decay, 45 50 -decay 55 60 65 70 75 80 ( 76 Ge, 100 Mo, 112 Sn), rare N decays ( 115 In), 35 Trap-assisted spectroscopy: 30 In-trap and decay studies, fission yields, 25

JYFLTRAP masses and AME2003 Michael Smith, ORNL, Nuclearmasses.org Neutron-deficient nuclei Analysis of JYFLTRAP data (118 points) RMS deviation 0.2403 MeV when compared to AME2003 AME2003, G. Audi et al., NPA 729 (2003) 337 Neutron-rich nuclei Amount of new data far from stability is increasing Large deviations observed far from stability Need to include new results in a new compilation / evaluation http://research.jyu.fi/igisol/jyfltrap_masses/

JYFLTRAP masses vs predictions S. Goriely N. Chamel and J. M. Pearson, PRL 102 (2009) 152503 (published 16 April 2009) Crossing the 0.6 MeV accuracy threshold HFB-17 Next session: N. Chamel [6] G. Audi, et al. Nucl. Phys. A729, 337 (2003). [12] http://research.jyu.fi/igisol/jyfltrap_masses/

Two-neutron separation energy S 2n S 2n (N,Z) = B(N,Z) B(N 2,Z) simplest observable for changes in ground-state binding energies M. Bender, G. F. Bertsch and P.-H. Heenen, PRC 78 (2008) 054312

Two-neutron separation energy S 2n S 2n (N,Z) = B(N,Z) B(N 2,Z) simplest observable for changes in ground-state binding energies M. Bender, G. F. Bertsch and P.-H. Heenen, PRC 78 (2008) 054312 Penning trap data: N=50 shell gap Liquid-drop type behaviour

Two-neutron separation energy S 2n S 2n (N,Z) = B(N,Z) B(N 2,Z) simplest observable for changes in ground-state binding energies M. Bender, G. F. Bertsch and P.-H. Heenen, PRC 78 (2008) 054312? Z>46? Z<30? N<82 Penning trap data: N=50 shell gap Liquid-drop type behaviour Local discontinuities at N~60 and Z~40 (This workshop: G. Tungate, J. Äystö, R.R. Rodriguez-Guzman)

N=50 gap; -spectroscopy and theory Z=28,30,32 isotopes, J. Van de Walle, PRL 99 (2007) 142501, PRC 79 (2009) 014309 M. Bender, G. F. Bertsch and P.-H. Heenen, PRC 78 (2008) 054312 This workshop: M. Huyse J. Pearson, S. Goriely, NPA 777 (2006) 623 Ni Ni

N=50 gap data 1995

N=50 gap data 2009 (Penning( traps) Mass measurements of 30 n-rich Zn, Ga, Ge, As and Se at JYFLTRAP J. Hakala et al. PRL 101 (2008) 052502 + 81 Zn: S. Baruah et al., PRL 101 (2008) 262501 Qualitatively: Indications of the opening of the gap beyond minimum gap at Ge (Z=32)! S 2n [MeV] 26 24 22 20 18 16 14 12 10 8 N=46 N=48 N=50 N=52 N=54 N=56 Zr Ni 30 32 34 36 38 40 42 44 46 Proton number Z

N=50 gap data 2009 (Penning( traps) Mass measurements of 30 n-rich Zn, Ga, Ge, As and Se at JYFLTRAP J. Hakala et al. PRL 101 (2008) 052502 + 81 Zn: S. Baruah et al., PRL 101 (2008) 262501 Qualitatively: Indications of the opening of the gap beyond minimum gap at Ge (Z=32)! S 2n [MeV] 26 24 22 20 18 16 14 12 10 8 Ni? N=46 N=48 N=50 N=52 N=54 N=56 30 32 34 36 38 40 42 44 46 Proton number Z Zr 82 Zn needed, IG-4 + JYFLTRAP, MATS,

N=50 shell gap; ; data vs. predictions Best agreement with FRDM (well known sophisticated microscopic-macroscopic model) Both spherical mean field calculations by Otsuka et al overpredícts the gap (GT3 and D1S interactions) Density functional theories (Sly4 and SkP) predict trends: monotonic decrease from Z=40 to Z=32 and increae towards 78 Ni, but th emagnitude of the gap varies, which may be due to the difference in isoscalar effective mass affecting level densities Similar calculation by Bender et al. with deformed basis and additional quadrupole correlations brings calculations close to the measurements 2n (N o =50) [MeV] 10 Shell gap equation: 2n (N o ) = S 2n (N o )-S 2n (N o +2) 9 8 7 6 5 4 3 2 1 D1S GT3 SLy4+GCM SLy4 SkP Exp. FRDM 1995 Duflo-Zuker 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Element number M. Bender et al. PRC73 (2006) 034332 P. Möller et al., ADNDT 59 (1995) 185 M. Stoitsov et al., Int. J. Mass Spectr. 251 (2006) 243 M. Stoitsov et al., PRC 68 (2003) 054312 T. Otsuka, private comm. J. Hakala et al. Phys. Rev. Lett. 101 (2008) 052502

N=50 shell gap; ; data vs. predictions Best agreement with FRDM (well known sophisticated microscopic-macroscopic model) Both spherical mean field calculations by Otsuka et al overpredícts the gap (GT3 and D1S interactions) Density functional theories (Sly4 and SkP) predict trends: monotonic decrease from Z=40 to Z=32 and increae towards 78 Ni, but th emagnitude of the gap varies, which may be due to the difference in isoscalar effective mass affecting level densities Similar calculation by Bender et al. with deformed basis and additional quadrupole correlations brings calculations close to the measurements 2n (N o =50) [MeV] 10 Shell gap equation: 2n (N o ) = S 2n (N o )-S 2n (N o +2) 9 8 7 6 5 4 3 2 1 D1S GT3 SLy4+GCM SLy4 SkP Exp. FRDM 1995 Duflo-Zuker 24 26 28 30 32 34 36 38 40 42 44 46 48 50 Element number M. Bender et al. PRC73 (2006) 034332 P. Möller et al., ADNDT 59 (1995) 185 M. Stoitsov et al., Int. J. Mass Spectr. 251 (2006) 243 M. Stoitsov et al., PRC 68 (2003) 054312 T. Otsuka, private comm. IG-4 + JYFLTRAP, MATS, J. Hakala et al. Phys. Rev. Lett. 101 (2008) 052502

stable nucleus JYFLTRAP 2007 ( 58 Ni + 58 Ni) V.-V. Elomaa et al., (2009) submitted to PRL JYFLTRAP 2006 ( 40 Ca + 58 Ni) C. Weber et al., PRC 78 (2008) 054310 A. Kankainen et al., PRL 101 (2008) 142503 JYFLTRAP 2006 (p/ 3 He + nat Ru/ 106 Cd) V.V Elomaa et al., EPJ A (2009) in press JYFLTRAP 2005 ( 32 S + 58 Ni) A. Kankainen et al., EPJ A 29 (2006) 271 T 1/2 > 10 ms, m > 10 kev T 1/2 > 10 ms, Unknown mass Rp- and p-process process studies Ru (44) Rh (45) Pd (46) Ag (47) Cd (48) In (49) Sn (50) Sb (51) Te (52) I (53) Xe (54) N=Z Nb (41) Mo (42) Tc (43) Y (39) Zr (40) Sr (38) N 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Sr (38) stable nucleus JYFLTRAP 2007 ( 58 Ni + 58 Ni) V.-V. Elomaa et al., (2009) submitted to PRL JYFLTRAP 2006 ( 40 Ca + 58 Ni) C. Weber et al., PRC 78 (2008) 054310 A. Kankainen et al., PRL 101 (2008) 142503 JYFLTRAP 2006 (p/ 3 He + nat Ru/ 106 Cd) V.V Elomaa et al., EPJ A (2009) in press JYFLTRAP 2005 ( 32 S + 58 Ni) A. Kankainen et al., EPJ A 29 (2006) 271 T 1/2 > 10 ms, m > 10 kev T 1/2 > 10 ms, Unknown mass Y (39) Zr (40) Nb (41) Rp- and p-process process studies Mo (42) Tc (43) Ru (44) Rh (45) Pd (46) Ag (47) Cd (48) In (49) Sn (50) I (53) Xe (54) N=Z Y ( Z 1, N) Te (52) S p ( Z 1, N) exp Y ( Z, NSb ) (51) kt N 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

SnSbTe-cycle: End of the rp-process process? Q p ( 105 Sb) increased by 130 kev No chance for SnSbTe cycle in 104 Sn (nor 103 Sn) H. Schatz et al, PRL86 (2001) 3471 Could cycle develop in 105 Sn? - depends on the Q p ( 106 Sb) -Q p = -950(210) kev [A. Plochocki et al, Phys. Lett. 106B (1981) 385 ] -Q p = -360(320) kev [AME2003, G. Audi et al., NPA 729 (2003) 337 ] JYFLTRAP: Branching to the SnSbTe cycle weaker than expected V.-V. Elomaa et al., (2009) submitted 17.2.2009

JYFLTRAP program summary Neutron-deficient nuclei: 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 Rp and p-processes, particle decaying 55 isomers ( 94 Ag, 53 Co), S p ( 93 Rh), SnSbTecycle, 55 50isospin symmetry, mirror transitions, 50 45 45 40 40 Z 35 30 25 20 15 10 Precise Q-values: Neutron-rich nuclei: 20 N=50 and Z=28 shell gaps, N=40 sub-shell closure, onset of deformation, evolution of collectivity in 15 transitional nuclei, 10 10 15 20 Superallowed 25 30 35 beta 40 decay, 45 50 -decay 55 60 65 70 75 80 ( 76 Ge, 100 Mo, 112 Sn), rare N decays ( 115 In), 35 Trap-assisted spectroscopy: 30 In-trap and decay studies, fission yields, 25

JYFLTRAP outlook Nuclear structure issues, V pn, unexplored regions, Superallowed -decay -decay, Mirror transitions Isospin symmetry, 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 nuclear astrophysics 55 55 Z 50 45 40 35 30 25 20 15 10 50 Fission yields, 45 nspectroscopy, 40 Shell gaps (N=82, Z=28, N=50, N=40) 35 deformation, nuclear astrophysics, 30 25 20 15 10 P. Möller et al., PRL 97 (2006) 162502 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 N

JYFLTRAP @ IGISOL-4 MCC30, 18-30 MeV H -, 9-15 MeV d -, 100 A Next Session: P. Heikkinen New location and lay-out of the IGISOL-facility Plenty of on-line time: flexible scheduling, longer experiments, Development time: d-induced fission, new targets, n-converter, LIS(T), Next Session: I. Moore R&D on instrumentation, trapping of multiply-charged ions, Instrumentation for complete spectroscopy of g.s. properties, excited states and different decay modes Present hall + IGISOL area + K130 Hall extension + new IGISOL area + MCC30

Construction site Jan-2008 17.4.2009 Jan-2009 V.-V. Elomaa, T. Eronen, J. Hakala, A. Jokinen, A. Kankainen, I. Moore, S. Rinta-Antila, J. Rissanen, A. Saastamoinen and J. Äystö and IGISOL-crew Alumni: U. Hager, V. Kolhinen, S. Kopecky, S. Rahaman, S. Rinta-Antila, J. Szerypo and C. Weber

Reaching the most exotic GSI GSI today today New New facility facility FAIR FAIR SIS 100/300 UNILAC SIS 18 ESR CBM 100 m HESR Super FRS from FAIR CDR, section 2 RESR CR FLAIR NESR

Low Energy Branch of the Super-FRS LASPEC MATS Ion catcher SUPER-FRS This workshop: M. Winkler, Thursday Energy Buncher

MATS Precision Measurements of Very-Short Lived Nuclei Using an Advances Trapping System for Highly-Charged Ions Spokesperson: Klaus Blaum Co-spokesperson: Ari Jokinen, J.R. Crespo López-Urrutia Project manager: Frank Herfurth BELGIUM, CANADA, FRANCE, FINLAND, GERMANY, INDIA, SPAIN, SWEDEN, USA and RUSSIA

Experiments with Exotic Nuclei Trap-assisted spectroscopy Measurement Penning trap Atomic masses 0.1 m Detectors: - FT-ICR - TOF-ICR - Si(Li) electron Precision trap: mass measurements Ground Floor Cooler trap: beam preparation & spectroscopy EBIT Preparation Penning trap 0.1 m Magn. deflector: q/m separation HV Cage HV Cage 0.0 EBIT: charge breeding Side View In-Trap Spectroscopy 10.5 m f c 1 2 q m B

http://research.jyu.fi/igisol/jyfltrap_masses/