Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de

Similar documents
Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de

Book of Abstracts - Extract th Annual Meeting. March 23-27, 2015 Lecce, Italy. jahrestagung.gamm-ev.de

Multigrid and Iterative Strategies for Optimal Control Problems

A note on accurate and efficient higher order Galerkin time stepping schemes for the nonstationary Stokes equations

Robust error estimates for regularization and discretization of bang-bang control problems

Efficient Solvers for Stochastic Finite Element Saddle Point Problems

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

S6. Control of PDE: Theory, Numerics, and Applications

From the Boundary Element DDM to local Trefftz Finite Element Methods on Polyhedral Meshes

Fast Iterative Solution of Saddle Point Problems

At-A-Glance SIAM Events Mobile App

From the Boundary Element Domain Decomposition Methods to Local Trefftz Finite Element Methods on Polyhedral Meshes

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

A Robust Preconditioner for the Hessian System in Elliptic Optimal Control Problems

Finite Elements. Colin Cotter. January 15, Colin Cotter FEM

At A Glance. UQ16 Mobile App.

SUPERCONVERGENCE PROPERTIES FOR OPTIMAL CONTROL PROBLEMS DISCRETIZED BY PIECEWISE LINEAR AND DISCONTINUOUS FUNCTIONS

Error estimates for Dirichlet control problems in polygonal domains

Hierarchical Parallel Solution of Stochastic Systems

1 Computing with constraints

Numerical Solution I

ngsxfem: Geometrically unfitted discretizations with Netgen/NGSolve (

Recovery-Based A Posteriori Error Estimation

A-posteriori error estimates for optimal control problems with state and control constraints

Bang bang control of elliptic and parabolic PDEs

A Balancing Algorithm for Mortar Methods

Theoretical advances. To illustrate our approach, consider the scalar ODE model,

Schedule of Talks. Monday, Nov :10-15:50 Martin Burger Optimization Problems in Semiconductor Dopant Profiling.

Interpolation in h-version finite element spaces

The All-floating BETI Method: Numerical Results

Fast Multipole BEM for Structural Acoustics Simulation

SOLVING ELLIPTIC PDES

Space-time sparse discretization of linear parabolic equations

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

Multilevel Preconditioning of Graph-Laplacians: Polynomial Approximation of the Pivot Blocks Inverses

Iterative solvers for saddle point algebraic linear systems: tools of the trade. V. Simoncini

Multilevel Sequential 2 Monte Carlo for Bayesian Inverse Problems

A very short introduction to the Finite Element Method

arxiv: v1 [math.na] 29 Feb 2016

Numerik 2 Motivation

Lecture 8: Boundary Integral Equations

Numerical Solution of a Coefficient Identification Problem in the Poisson equation

Hamburger Beiträge zur Angewandten Mathematik

Domain Decomposition Preconditioners for Spectral Nédélec Elements in Two and Three Dimensions

An introduction to PDE-constrained optimization

Karhunen-Loève Approximation of Random Fields Using Hierarchical Matrix Techniques

Sparse Quadrature Algorithms for Bayesian Inverse Problems

A Balancing Algorithm for Mortar Methods

Adaptive methods for control problems with finite-dimensional control space

On solving linear systems arising from Shishkin mesh discretizations

Numerical analysis and a-posteriori error control for a new nonconforming quadrilateral linear finite element

JOHANNES KEPLER UNIVERSITY LINZ. A Robust FEM-BEM Solver for Time-Harmonic Eddy Current Problems

Weighted Regularization of Maxwell Equations Computations in Curvilinear Polygons

Adaptive discretization and first-order methods for nonsmooth inverse problems for PDEs

Space-time XFEM for two-phase mass transport

Multigrid and stochastic sparse-grids techniques for PDE control problems with random coefficients

FETI-DP for Elasticity with Almost Incompressible 2 Material Components 3 UNCORRECTED PROOF. Sabrina Gippert, Axel Klawonn, and Oliver Rheinbach 4

Adaptive Finite Element Methods Lecture 1: A Posteriori Error Estimation

On the regularity of the solutions of Dirichlet optimal control problems in polygonal domains

20. A Dual-Primal FETI Method for solving Stokes/Navier-Stokes Equations

On second order sufficient optimality conditions for quasilinear elliptic boundary control problems

Weierstraß-Institut. für Angewandte Analysis und Stochastik. im Forschungsverbund Berlin e.v. Preprint ISSN

ON THE ROLE OF COMMUTATOR ARGUMENTS IN THE DEVELOPMENT OF PARAMETER-ROBUST PRECONDITIONERS FOR STOKES CONTROL PROBLEMS

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Solving Boundary Value Problems (with Gaussians)

Stabilization Techniques and a Posteriori Error Estimates for the Obstacle Problem

MCMC Sampling for Bayesian Inference using L1-type Priors

Incomplete Cholesky preconditioners that exploit the low-rank property

On the interplay between discretization and preconditioning of Krylov subspace methods

Overlapping Schwarz preconditioners for Fekete spectral elements

Sparse Tensor Galerkin Discretizations for First Order Transport Problems

An a posteriori error estimator for the weak Galerkin least-squares finite-element method

Local discontinuous Galerkin methods for elliptic problems

Weak Galerkin Finite Element Scheme and Its Applications

Problems of Corner Singularities

Minghao Wu Rostami Address: Webpage: Positions Tenure-Track Assistant Professor Postdoctoral Researcher Lecturer Graduate Assistant

ON THE INFLUENCE OF THE WAVENUMBER ON COMPRESSION IN A WAVELET BOUNDARY ELEMENT METHOD FOR THE HELMHOLTZ EQUATION

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

Notes on Numerical Fluid Mechanics

Modelling in photonic crystal structures

Sequential Monte Carlo Samplers for Applications in High Dimensions

Numerical methods for PDEs FEM convergence, error estimates, piecewise polynomials

Technische Universität Graz

A Priori Error Analysis for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems

Efficient hp-finite elements

Goal-oriented error control of the iterative solution of finite element equations

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Non-Conforming Finite Element Methods for Nonmatching Grids in Three Dimensions

FEniCS Course. Lecture 0: Introduction to FEM. Contributors Anders Logg, Kent-Andre Mardal

Institut für Mathematik

Preconditioners for reduced saddle point systems arising in elliptic PDE-constrained optimization problems

A Finite Element Method for the Surface Stokes Problem

7.4 The Saddle Point Stokes Problem

A High-Performance Parallel Hybrid Method for Large Sparse Linear Systems

Nonparametric density estimation for elliptic problems with random perturbations

A LAGRANGE MULTIPLIER METHOD FOR ELLIPTIC INTERFACE PROBLEMS USING NON-MATCHING MESHES

EFFICIENT NUMERICAL TREATMENT OF HIGH-CONTRAST DIFFUSION PROBLEMS

Probing the covariance matrix

Bayesian inverse problems with Laplacian noise

Transcription:

GESELLSCHAFT für ANGEWANDTE MATHEMATIK und MECHANIK e.v. INTERNATIONAL ASSOCIATION of APPLIED MATHEMATICS and MECHANICS 86 th Annual Meeting of the International Association of Applied Mathematics and Mechanics March 23-27, 20 Lecce, Italy Book of Abstracts - Extract 20 jahrestagung.gamm-ev.de

Sun day 22 Time Scientific Program - Timetable Monday 23 Tuesday 24 Wednesday 25 Thursday 26 Friday 27 9: 10: ( in parallel) Moritz Diehl von Mises prize lecture ( in parallel) (14 in parallel) 11: 12: Registration Thomas Böhlke General Assembly Ferdinando Auricchio (11 in parallel) 13: Opening Univ. Chorus Performance Lunch Lunch Lunch Closing 14: : Prandtl Lecture Keith Moffatt Giovanni Galdi Enrique Zuazua Nikolaus Adams ( in parallel) Daniel Kressner Stanislaw Stupkiewicz Registration pre- opening 16: 17: 18: 19: 20: 21: Minisymposia & Young Reseachers' Minisymposia (10 in parallel) Opening reception at Castle of Charles V Poster session (14 in parallel) Public lecture Francesco D'Andria ( in parallel) Conference dinner at Hotel Tiziano Poster session ( in parallel)

GAMM 20 Università del Salento Table of contents YRMS3: Discretization Aspects in PDE Constrained Optimization 4 Shape optimization by pursuing diffeomorphisms Paganini - Hiptmair........................................... 5 Fast Iterative Solvers for Discretizations of PDE-Constrained Optimization Problems Pearson.................................................. 6 Finite element error estimates for Dirichlet boundary control problems on polygonal domains Pfefferer - Apel - Mateos - Rösch.................................... 7 Scaling Limits in Computational Bayesian Inversion Schillings - Schwab............................................ 8 A Posteriori Error Estimation for State-Constrained Optimal Control Problems Steinig - Siebert - Rösch......................................... 9 Optimal convergence order for control constrained optimal control problems Wachsmuth - Schneider......................................... 10 3

YRMS3 YRMS3: Discretization Aspects in PDE Constrained Optimization Optimization problems with partial differential equations (PDEs) as constraint have been of tremendous research interest over the past decades. Due to the PDE, these problems are of infinite dimension and can rarely be tackled directly. Instead, the PDE needs to be discretized. This important step in the numerical consideration of PDE constrained optimization problems gives rise to a multitude of research questions, going from the choice of a suitable discretization for a given application, convergence analysis for the discrete approximations to the limit as the mesh is refined, to the design of appropriate (finite dimensional) solvers for the corresponding discrete problems. GAMM 20 4

YRMS3 Monday, March 23 16:-16:50 (Botticelli Room) Paganini Shape optimization by pursuing diffeomorphisms Ralf Hiptmair, Alberto Paganini Seminar for Applied Mathematics, ETHZ We consider PDE constrained shape optimization in the framework of finite element discretization of the underlying boundary value problem. We present an algorithm tailored to preserve and exploit the approximation properties of the finite element method, and that allows for arbitrarily high resolution of shapes. It is based on the method of mappings and it employs (i) B-spline based representations of the deformation diffeomorphism, and (ii) superconvergent domain integral expressions for the shape gradient. We provide numerical evidence of the performance of this method both on prototypical well-posed and ill-posed shape optimization problems. References [1] R. Hiptmair, A. Paganini and S. Sargheini. Comparison of approximate shape gradients. BIT Numerical Mathematics (2014). [2] R. Hiptmair, A. Paganini. Shape optimization by pursuing diffeomorphisms. SAM-Report 2014-27. GAMM 20 5

YRMS3 Monday, March 23 16:50-17:10 (Botticelli Room) Pearson Fast Iterative Solvers for Discretizations of PDE-Constrained Optimization Problems John W. Pearson University of Edinburgh A key consideration when discretizing PDE-constrained optimization problems is that of devising fast and effective methods for solving the resulting discretized systems. In this talk we focus on constructing preconditioned iterative methods for such problems, by exploiting the saddle point structure of the matrix systems that arise. Using strategies that we have developed for more fundamental problems of time-independent [2] and timedependent [4] form, we consider fast solvers for time-dependent PDE-constrained optimization problems. We focus on two specific such problems, from different application areas. Firstly we examine the time-dependent Stokes control problem [3], and build solvers for the sparse matrix systems involved using effective approximations of the (1, 1)-block and Schur complement. Secondly we examine dense matrix systems that arise from the optimal control of fractional differential equations [1], and discover whether our approaches may also be applied to such problems. For each problem presented in this talk, we consider the likely theoretical convergence properties of our methods, the practical rate of convergence observed in numerical experiments, and whether our methods may lead to parallelizable solution strategies. References [1] S. Dolgov, J. W. Pearson, D. V. Savostyanov and M. Stoll, Fast Tensor Product Solvers for Optimization Problems with Fractional Differential Equations as Constraints, to be submitted. [2] J. W. Pearson and A. J. Wathen, A New Approximation of the Schur Complement in Preconditioners for PDE-Constrained Optimization, Numerical Linear Algebra with Applications, 19(5), pp.294 310, 2012. [3] J. W. Pearson, Fast Iterative Solvers for Large Matrix Systems Arising from Time-Dependent Stokes Control Problems, submitted, 2014. [4] J. W. Pearson, M. Stoll and A. J. Wathen, Regularization-Robust Preconditioners for Time-Dependent PDE- Constrained Optimization Problems, SIAM Journal on Matrix Analysis and Applications, 33(4), pp.1126 12, 2012. GAMM 20 6

YRMS3 Monday, March 23 17:10-17: (Botticelli Room) Pfefferer Finite element error estimates for Dirichlet boundary control problems on polygonal domains Th. Apel 1, M. Mateos 2, J. Pfefferer 1, and A. Rösch 3 1 Universität der Bundeswehr München 2 Universidad de Oviedo 3 Universtät Duisburg-Essen In this talk we study the control constrained Dirichlet boundary control problem min J(u) = 1 y Ω (x)) 2 Ω(Su(x) 2 dx + ν u 2 (x) dσ(x) 2 Γ subject to (Su, u) H 1/2 (Ω) L 2 (Γ), where Su is the solution y of the state equation u U ad = {u L 2 (Γ) : a u(x) b for a.a. x Γ}, y = 0 in Ω, y = u on Γ. The underlying domain Ω is assumed to be polygonal but not necessarily convex. Since for u U ad the state equation does not possess a variational solution, the state equation is understood in the transposition sense. In the first part of this talk, we investigate the regularity of the solution of the optimal control problem. It is well known that in polygonal domains the solution of an elliptic partial differential equation generally contains singular terms which depend on the size of the interior angles of the domain. By analyzing these terms in detail we are able to improve existing regularity results for the solution of the optimal control problem in convex domains. Moreover, completely new regularity results are presented for problems posed in non-convex domains. For example, we show that the optimal control is a continuous function although the normal derivative of the adjoint state may be unbounded. In the second part, we discuss error estimates for the discretized optimal control problem where we apply a full discretization with piecewise linear and continuous functions for both the state and the control. The error estimates which we obtain mainly depend on the size of the interior angles but also on the presence of control constraints. Finally, different numerical examples are presented in order to illustrate the theoretical results. GAMM 20 7

YRMS3 Monday, March 23 17:-17:50 (Botticelli Room) Schillings Scaling Limits in Computational Bayesian Inversion Claudia Schillings, Christoph Schwab University of Warwick SAM - ETHZ In this talk, preconditioning strategies for sparse, adaptive quadrature methods for computational Bayesian inversion of operator equations with distributed uncertain input parameters will be presented. Based on sparsity results of the posterior, error bounds and convergence rates of dimension-adaptive Smolyak quadratures can be shown to be independent of the parameter dimension, but the error bounds depend exponentially on the inverse of the covariance of the additive, Gaussian observation noise. We will discuss asymptotic expansions of the Bayesian estimates, which can be used to construct quadrature methods combined with a curvature-based reparametrization of the parametric Bayesian posterior density near the (assumed unique) global maximum of the posterior density leading to convergence with rates independent of the number of parameters as well as of the observation noise variance. GAMM 20 8

YRMS3 Monday, March 23 17:50-18:10 (Botticelli Room) Steinig A Posteriori Error Estimation for State-Constrained Optimal Control Problems K.G. Siebert 1, A. Roesch 2, S. Steinig 3 1 University of Stuttgart 2 University Duisburg-Essen 3 TU Dortmund In this contribution we will examine a finite element discretisation of a state-constrained elliptic optimal control problem. We will present a reliable a posteriori error estimator giving an upper bound for the error between the true solution and the discrete one up to data-dependent constants which also takes into account the regularisation error naturally coming into play when tackling these kind of problems numerically. Together with a basic convergence result for a sequence of finite element discretisations we are thus able to build a convergent adaptive scheme for this type of problem mirroring the results derived for PDEs and control-constrained optimal control problems in [1] and [2] respectively. References [1] P. Morin, K.G. Siebert, A. Veeser. A basic convergence result for conforming adaptive finite elements. Mathematical Models and Methods in Applied Sciences. 18 (2008), 707 737. [2] K. Kohls, A. Roesch, K.G. Siebert. A posteriori error analysis of optimal control problems with control constraints. SIAM Journal on Control and Optimization. 52 (2014), 1832 1861. GAMM 20 9

YRMS3 Monday, March 23 18:10-18: (Botticelli Room) Wachsmuth Optimal convergence order for control constrained optimal control problems René Schneider, Gerd Wachsmuth In this talk we consider the numerical solution of control constrained optimal control problems. We are interested in obtaining the optimal convergence rate for the L 2 -error w.r.t. the number of degrees of freedom. Due to the control constraint, the optimal control possesses a kink at the interface between the active and inactive set w.r.t. the control constraint. This kink limits the convergence order of a uniform discretization to h 3/2. We compare some approaches from the literature. Moreover, we provide a new, efficient and robust error estimator which is used for an adaptive refinement of the mesh. We also present a new method for solving control constrained problems. In this method, we move the nodes of the mesh at the interface between the active and inactive set. This yields optimal order of convergence. GAMM 20 10