Princeton University, Physics 311/312 Blackbody Radiation, Page 1 BLACKBODY RADIATION

Similar documents
Determination of Stefan-Boltzmann Constant.

Thermal Radiation of Blackbodies Lab Partner 1 & Lab Partner 2 12 May 2011

Chapter 1. Blackbody Radiation. Theory

Satish Chandra. Blackbody. Unit IV, BLACK BODY RADIATION. Radiation in a Hollow Enclosure. Pure Temperature Dependence

Background The power radiated by a black body of temperature T, is given by the Stefan-Boltzmann Law

The term "black body" was introduced by Gustav Kirchhoff in The light emitted by a black body is called black-body radiation.

Class 11: Thermal radiation

Sources of radiation

The Stefan-Boltzmann Law

Modern Physics (Lec. 1)

Chapter 13. Phys 322 Lecture 34. Modern optics

Module 5 : MODERN PHYSICS Lecture 23 : Particle and Waves

Photoelectric Effect

Lasers PH 645/ OSE 645/ EE 613 Summer 2010 Section 1: T/Th 2:45-4:45 PM Engineering Building 240

Blackbody radiation. Main Laws. Brightness temperature. 1. Concepts of a blackbody and thermodynamical equilibrium.

ATOMIC PHYSICS BLACK-BODY RADIATION Practical 4 STUDY OF THERMAL RADIATION LAWS

Modern Physics Laboratory MP2 Blackbody Radiation

ATMO/OPTI 656b Spring 2009

Lecture 2 Blackbody radiation

Experiment objectives: measure the ratio of Planck s constant to the electron charge h/e using the photoelectric effect.

Practical 1P4 Energy Levels and Band Gaps

Physics 17 Spring 2003 The Stefan-Boltzmann Law

Chapter One. The Old Quantum Theory. 1-1 Why Quantum Mechanics.

Introduction to Modern Physics NE 131 Physics for Nanotechnology Engineering

Lab 1: Measuring Planck s Constant Using LEDs Adapted from a lab procedure written by Martin Hackworth, University of Idaho

Practical 1P4 Energy Levels and Band Gaps

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

High Resolution Optical Spectroscopy

Modern Physics, summer Modern physics. Historical introduction to quantum mechanics

Calibrating the Thermal Camera

Stellar Astrophysics: The Continuous Spectrum of Light

is the minimum stopping potential for which the current between the plates reduces to zero.

de = j ν dvdωdtdν. (1)

2. Fingerprints of Matter: Spectra

MODERN OPTICS. P47 Optics: Unit 9

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

Quantum Mechanics: Blackbody Radiation

Any first year text, sections on atomic structure, spectral lines and spectrometers

FI 3103 Quantum Physics

Photoelectric Effect

Electro-Optical System. Analysis and Design. A Radiometry Perspective. Cornelius J. Willers SPIE PRESS. Bellingham, Washington USA

If light travels past a system faster than the time scale for which the system evolves then t I ν = 0 and we have then

= (fundamental constants c 0, h, k ). (1) k

AT622 Section 3 Basic Laws

h/e Apparatus h/e Apparatus Accessory Kit

INFRAMET. 2.1 Basic laws

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

Quantum Mechanics (made fun and easy)

QM all started with - - The Spectrum of Blackbody Radiation

SPH4U UNIVERSITY PHYSICS

General Physics (PHY 2140)

1. Historical perspective

Experiment 2-7. Planck constant measurement. using photoelectric effect

Chemistry 795T. Lecture 7. Electromagnetic Spectrum Black body Radiation. NC State University

Chemistry 795T. Black body Radiation. The wavelength and the frequency. The electromagnetic spectrum. Lecture 7

AS 101: Day Lab #2 Summer Spectroscopy

UNIT : QUANTUM THEORY AND THE ATOM

Chapter 3 Energy Balance and Temperature. Astro 9601

Phys 322 Lecture 34. Chapter 13. Modern optics. Note: 10 points will be given for attendance today and for the rest of the semester.

Modern physics. Historical introduction to quantum mechanics

With certain caveats (described later) an object absorbs as effectively as it emits

Dr. Linlin Ge The University of New South Wales

Astronomy The Nature of Light

LC-4: Photoelectric Effect

Astronomy 203 practice final examination

ATOMIC PHYSICS PHOTOELECTRIC EFFECT Practical 2 DETERMINATION OF PLANCK S CONSTANT BY MEANS OF THE STOPPING POTENTIAL

Chemistry 431. Lecture 1. Introduction Statistical Averaging Electromagnetic Spectrum Black body Radiation. NC State University

Chapter 3 Energy Balance and Temperature. Topics to be covered

Radiation - Electromagnetic Waves (EMR): wave consisting of oscillating electric and magnetic fields that move at the speed of light through space.

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.4: Blackbody Radiation and Photoelectric Effect

1. The most important aspects of the quantum theory.

Photoelectric Effect

The Light of Your Life. We can see the universe because atoms emit photons

Investigation #9 OBSERVATION OF THE PHOTOELECTRIC EFFECT

DAY LABORATORY EXERCISE: SPECTROSCOPY

Lab VI Light Emitting Diodes ECE 476

1 Radiative transfer etc

ASTRONOMY 103: THE EVOLVING UNIVERSE. Lecture 4 COSMIC CHEMISTRY Substitute Lecturer: Paul Sell

Early Quantum Theory and Models of the Atom

Chapter 27. Quantum Physics

Laser Raman Spectroscopy: Vibrational Spectrum of CCl 4

Atomic Physics and Lasers. The idea of a photon. Light from a hot object... Example of a Blackbody. Example of a Blackbody

Exam 2 Development of Quantum Mechanics

Planck s Hypothesis of Blackbody

Lecture 2: principles of electromagnetic radiation

Experiment 4 Radiation in the Visible Spectrum

Part I. Quantum Mechanics. 2. Is light a Wave or Particle. 3a. Electromagnetic Theory 1831 Michael Faraday proposes Electric and Magnetic Fields

ATMOS 5140 Lecture 7 Chapter 6

Thermal Radiation By: Prof. K M Joshi

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

1 THE CONCEPT OF TEMPERATURE

FALL 2004 Final Exam, Part A

STSF2223 Quantum Mechanics I

Electromagnetic Radiation. Physical Principles of Remote Sensing

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado

1. Why photons? 2. Photons in a vacuum

Notes on Black body spectrum

Explain how Planck resolved the ultraviolet catastrophe in blackbody radiation. Calculate energy of quanta using Planck s equation.

Radiation Heat Transfer. Introduction. Blackbody Radiation. Definitions ,

2001 Spectrometers. Instrument Machinery. Movies from this presentation can be access at

Transcription:

Princeton University, Physics 311/312 Blackbody Radiation, Page 1 BLACKBODY RADIATION Introduction A black body is an object that absorbs all radiation falling on it. According to Kirchoff s Laws, such a perfect absorber must also be a perfect radiator; no other body at the same temperature can radiate more energy per unit area in any given range of wavelengths. A small hole leading into a heated cavity makes a good experimental realization of a black body. The flux of energy radiated from the hole is proportional to the radiant energy density inside the cavity, which will be very nearly in thermal equilibrium. The spectral distribution of black body radiation was a subject of great interest in the 19th century. The spectrum could be partially understood by means of thermodynamic arguments, and many physicists felt that a complete understanding should be possible using the techniques of statistical mechanics. The Stefan-Boltzmann Law, derived from thermodynamics, states that the power per area radiated by a black body is proportional to the fourth power of the temperature, P = σt 4, where σ = 5.7 10 8 Watts/K 4 m 2. The proportionality can be verified by this experiment, although the magnitude of the constant cannot be determined. A more detailed relation, also derivable from thermodynamics, is Wien s displacement law. It states that the surface brightness of black body radiation must be of the form B λ (T ) = T 5 f(λt ) where f is some unknown function of the product of the wavelength and temperature. Note that this law contains the Stefan-Boltzmann law, so that verifying it verifies Stefan s Law as well. Attempts to derive the form of the function f(λt ) from classical statistical mechanics met with total failure. Wien derived a fairly good approximation by making some plausible (but unsupportable) assumptions; his approximation predicted too small an energy density at long wavelengths, however. Rayleigh and Jeans used classical statistical mechanics to derive a formula that fit the data in the long wavelength region but diverged in the shortwavelength limit. Its integral also diverged, meaning that it predicted an infinite radiation density. This difficulty was referred to as the ultraviolet catastrophe. Planck managed to patch up Wien s formula by including a 1 in the denominator (see equation below), making it agree with experiments over the entire wavelength range. B λ has units of Power/(area wavelength steradian) and is called a surface brightness, a brightness, an intensity, or a radiance. Mathematically, it is a distribution. One often sees the wavelength replaced by frequency.

Princeton University, Physics 311/312 Blackbody Radiation, Page 2 When he tried to justify this new formula, he found that he was forced to assume a proportionality between the energy radiated by an atomic oscillator and the frequency of the radiation. This was the origin of the quantum hypothesis. Planck s formula, expressed as power per unit area per unit solid angle in wavelength range dλ, or simply the brightness, is 2hc 2 B λ (T )dλ = λ 5 (e hc/λkt 1) dλ. It contains one new constant, h, now known as Planck s constant. It was of course a triumph when the same value of this constant appeared in Einstein s photoelectric equation a few years later. The Black Body The blackbody used for this experiment is an oven with an effective cavity emissivity near 1.0. An on/off control loop (servo system) supplies current to heaters to keep the temperature constant. It takes about six hours to reach a temperature that is stable to ±5 K. While doing the experiment, check the temperature every twenty minutes or so. The temperature is sensed with a platinum/platinum-rhodium thermocouple. The voltage across a junction of two dissimilar metals is a reproducible function of temperature. Typically, a reference junction is submerged in an ice bath though in this case we measure its temperature an compensate for it. The calibration for the thermocouple is mounted on top of the oven. Infra-red Spectrometer The spectrometer is a prism monochromator using a Wadsworth mirror that ensures the prism is always used at minimum deviation. It is similar to the one described by Harnwell and Livingood (1933). The prism is made of fluorite (calcium fluoride) with an apex angle of 59.642 ±0.002. The focusing elements are concave mirrors. The slit widths are set at 0.25 millimeters and are not adjustable. The spectrometer is mounted inside a sealed tank with chemical absorbers to minimize the absorption of infra-red light by CO 2 and H 2 O molecular bands. The window through which the radiation enters the tank is made of fluorite. The prism is rotated by a micrometer tangent screw that turns it by 0.002 per division. Detector The detector is a bolometer made of a strip of palladium leaf 10 5 cm thick and blackened with acetylene soot. Radiation entering the spectrometer is chopped at about 25 Hz by a sectored rotating wheel; when radiation is absorbed by the blackened palladium, its temperature increases and thus its electrical resistance rises. A battery drives a steady l0 ma current through the palladium, so the increased resistance causes a larger voltage drop across the strip. The resulting AC signal is capacitively coupled to a transformer and then to a Keithley high gain preamplifier and a Princeton Applied Research JB-4 lock-in amplifier.

Princeton University, Physics 311/312 Blackbody Radiation, Page 3 Schematic of experiment. Certain wavelengths of black-body radiation emitted from the oven are selected by the spectrometer and detected by the bolometer. To make sure that only radiation from the oven is counted, a chopper modulates it at 25 Hz. A lockin amplifiers is then used to lock-in on the 25 Hz component of the total detected signal. Spectrometer Acceptance Black body radiation is focused onto the entrance slit of the spectrometer so that the area of the slit is the effective radiating area of the black body. The solid angle is determined by the aperture of the prism, as viewed from the entrance slit. The signal is proportional to these two quantities and to B λ (T ) λ, where λ is the wavelength range passed by the spectrometer. This range is proportional to the slit width, but also depends on the dispersion, dn/dλ, of the prism. The bigger dn/dλ is, the more the spectrum is spread out along the plane of the exit slit, and the smaller will be the range of wavelengths that pass through the exit slit to the bolometer. A formula for the wavelength range, λ, is given by Taylor (1959) and is computed by the program INDEX ETC.C. The second term in Taylor formula refers to diffraction effects that become negligible with slits as wide as the ones in this spectrometer. Experimental Procedure 1 Direct the Helium Neon laser beam (λ = 632.8 nm) into the spectrometer. It is bright enough that you can see the light scattered from the mirror surfaces. Set the micrometer to give the prism angle which causes the beam to go through the exit slit. Also note the relative humidity in the spectrometer. 2 Now you can set up the PAR JB-4 lock-in amplifier. Turn on the chopper motor to provide a reference signal. Set the lock-in to the SEL EXT (selective external) mode,

Princeton University, Physics 311/312 Blackbody Radiation, Page 4 because this guarantees that the reference signal to the phase-sensitive detector will be symmetrical. 3 Tune the main frequency dial to maximize the meter reading with its switch set to REF. Keep the LEVEL set low enough that the meter reading is 75 or lower. After the peak is found, set the LEVEL to give a meter reading of 50 80. 4 Feed the reference signal through a 10 db attenuator into the signal channel of the lock-in. Set the meter switch to SIG and tune the FREQ TRIM knob for maximum reading. Adjust the SIGNAL LEVEL to a convenient point. 5 Be sure that the preamplifier and the bolometer bias current are turned on, and set the meter switch to OUT 1 with the signal and reference cables connected for normal operation. The laser provides a strong signal, and the PHASE may be adjusted to maximize it. The SIGNAL LEVEL must, of course, be set appropriately. The FILTER time constant must be set to keep noise manageable; if you use a long time constant, adjustments must be made very slowly. 6 Adjust the micrometer (always moving toward increasing readings) to maximize the signal from the laser. This gives a fiducial setting that, when combined with the characteristics of the prism, will enable you to convert micrometer readings to angles of incidence on the prism and then to wavelengths. 7 Start heating the oven. You should take data at three or four temperatures. In the region of the peak, points should be fairly close together; toward the long wavelength tail they can be farther apart. Judge the appropriate spacings by how much the signal is changing. Use a long enough filter time constant to keep noise reasonable, and allow enough time for the readings to settle down after changing the prism angle. If you make a rough plot of your raw data, you will be able to see how things are going while there is still an opportunity to take another point or two, as might be needed. Data Analysis You will probably want to use a computer to analyze your data for this experiment. A program called REDUCE BBODY DATA.C has been written for this purpose, and is available from L. Page. Some documentation for the existing program is in the code. If you use this program, you should make sure that you understand how it works. You should feel free to copy the program and modify it to suit your needs more precisely. If you need help using the computer, ask! Your write-up for this experiment should include three plots. The first is just plot for one temperature of the raw data micrometer reading vs. lockin output. The second is a plot of intensity (corrected for spectrometer acceptance) versus wavelength for each of the three temperatures at which you took data. You ll find that there s an advantage to plotting all curves on one set of coordinate axes, as this will best show the effects of the molecular absorption bands of CO 2 and H 2 O. In a third plot, present all of your data points on a universal plot, to verify Wien s displacement law. For the abscissa of this plot, use λ/λ m, where λ m is the wavelength at the peak of the spectral distribution. You can calculate λ m from the temperature by using λ m = 2897.79/T, where the wavelength is in microns and the temperature is in Kelvin. You should also use your data to derive this

Princeton University, Physics 311/312 Blackbody Radiation, Page 5 result (with error bars). The proper choice of ordinate should cause all of your points to fall on a common curve. A tabulation from Planck s formula is available in the laboratory. After an appropriate normalization, compare the data in the universal plot with Planck s law. Questions to ponder Can a perfect mirror at 1000K radiate? What would you measure if the inside of the oven were lined with mirrors? How much power is being radiated into the spectrometer by the oven? How do the optics work? Why is the Wadsworth prism/mirror needed? What is the effect of diffraction on the measured spectrum? What is the effect of absorption by the window and prism? How was the frequency of the chopper chosen? How does the steradian in the brightness formula relate to the instrument? Does it change as the prism rotates? Why use a lock-in amplifier? Is the bolometer linear? How would you check? How does a thermocouple work? Could you draw a schematic of the circuit? At what wavelength is the peak intensity of a 300K black body? How would you verify Wien s law? References Consult the texts by Harnwell and Livingood or Richtmeyer, Kennard, and Lauritsen (or other texts) for the theory of black body radiation. Harnwell and Livingood also describe an experiment that is pretty close to what we have. The Taylor Manual, which relates prism angles to wavelengths, is available in the library or you can get a program from L. Page. Coblentz (1914) presents a description of early research on black body radiation at the National Bureau of Standards. Harnwell and Livingood, 1933. Experimental Atomic Physics, (New York: McGraw Hill), pp. 41-82. Richtmeyer, Kennard, and Lauritsen, 1955. Introduction to Modern Physics, 5th edition (New York: McGraw Hill), pp. 106 132. Tables for the Black Body Radiation Experiment, Advanced Lab. The Taylor Manual of Advanced Experiments in Physics, pp. 117-119, Wesley (1959). Coblentz, 1914. Bulletin of the National Bureau of Standards, 10, 1. Revised January, 1990, J. H. Taylor Revised Sept., 1995, L. Page