Rocks. Basic definitions. Igneous Rocks Sedimentary Rocks Metamorphic Rocks

Similar documents
Rocks. Igneous Rocks Sedimentary Rocks Metamorphic Rocks. Igneous Rocks. All rocks that form from cooling of a mass of molten rock (melt or magma).

Chapter 10. Chapter Rocks and the Rock Cycle. Rocks. Section 1 Rocks and the Rock Cycle

Rocks Rock- A group of minerals, glass, mineroid bound together in some way.

Name Class Date. In your textbook, read about the nature of igneous rocks. Use each of the terms below just once to complete the following statements.

Chapter 4 Rocks & Igneous Rocks

Page 1. Name: 1) Which diagram best shows the grain size of some common sedimentary rocks?

Rocks. Rocks are composed of 1 or more minerals. Rocks are classified based on how they formed (origin). 3 classes of rocks:

Review - Unit 2 - Rocks and Minerals

Topics that will be discussed

Version 1 Page 1 Barnard/George/Ward

Essentials of Geology, 11e

A. IGNEOUS Rocks formed by cooling and hardening of hot molten rock called magma (within crust or at its surface).

As compaction and cementation of these sediments eventually occur, which area will become siltstone? A) A B) B C) C D) D

Evolution of the Earth

Which sample best shows the physical properties normally associated with regional metamorphism? (1) A (3) C (2) B (4) D

Instructor: Ms. Terry J. Boroughs Geology 8 INTRODUCTION TO ROCKS AND THE ROCK CYCLE

RR#7 - Multiple Choice

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

Earth Science Chapter 6 Rocks

Plate tectonics, rock cycle

Page 1. Name:

Rocks: Materials of the Solid Earth

The 3 types of rocks:

THE ROCK CYCLE & ROCKS. Subtitle

Rock Identification. invisible rhyolite andesite basalt komatiite. visible granite diorite gabbro peridotite

Which rock is shown? A) slate B) dunite C) gneiss D) quartzite

CEE 437 Lecture 10 Rock Classification. Thomas Doe

Directed Reading. Section: Rocks and the Rock Cycle. made of a. inorganic matter. b. solid organic matter. c. liquid organic matter. d. chemicals.

2 Igneous Rock. How do igneous rocks form? What factors affect the texture of igneous rock? BEFORE YOU READ. Rocks: Mineral Mixtures

The Rock Cycle The Rock Cycle illustrates the origin of igneous, sedimentary and metamorphic rocks

I m good. Thank you.

A rock is a naturally occurring solid mixture of one or more minerals, or organic matter

TEACHER BACKGROUND KNOWEDGE. Minerals, Rocks and the Rock Cycle

23/9/2013 ENGINEERING GEOLOGY. Chapter 2: Rock classification:

GEOL FORENSIC GEOLOGY ROCK IDENTIFICATION

Imagine the first rock and the cycles that it has been through.

Practice Test Rocks and Minerals. Name. Page 1

Igneous Rocks. Sedimentary Rocks. Metamorphic Rocks

Quiz 1. 3) Which of the following planetary bodies has the least number of impact craters on its surface? A) Mercury B) Mars C) the Moon D) Earth

Engineering Geology ECIV 2204

Unit 2: Minerals and Rocks Practice Questions

Liz LaRosa Images from Geology.com unless otherwise noted

Block: Igneous Rocks. From this list, select the terms which answer the following questions.

Lecture 3 Rocks and the Rock Cycle Dr. Shwan Omar

Name Regents Review #7 Date

Unit 2 Exam: Rocks & Minerals

Name Class Date. Chapter 3 Rocks Chapter Test. Write the letter that best answers the question or completes the statement on the line provided.

Lab: Metamorphism: minerals, rocks and plate tectonics!

ROCKS & MINERALS UNIT. 8 th Grade Earth & Space Science

Figure 1. Random orientation of crystal grains in an igneous rock, granite.

GLY 155 Introduction to Physical Geology, W. Altermann. Grotzinger Jordan. Understanding Earth. Sixth Edition

Igneous, Metamorphic & Sedimentary. Chapter 5 & Chapter 6

Happy Tuesday. Pull out a ½ sheet of paper


9/4/2015. Feldspars White, pink, variable Clays White perfect Quartz Colourless, white, red, None

CEE 437 Lecture 11 Rock Classification. Thomas Doe

BELLRINGER QUESTION:

Rocks are made from Minerals

Lab 6: Metamorphic Rocks

Rocks: Materials of the Solid Earth

Minerals. What are minerals and how do we classify them?

This slide show is intended to help you understand important types of rocks.

Hafeet mountain. Rocks

COMPOSITIONAL TERMS: FELSIC : light colored INTERMEDIATE : medium shades MAFIC : dark colored ULTRAMAFIC : rare (composition of the mantle)

BRYCE CANYON NATIONAL PARK Earth s Dynamic Treasures Rocks & The Rock Cycle

Rocks and The Rock Cycle

Chapter 4 8/27/2013. Igneous Rocks. and Intrusive Igneous Activity. Introduction. The Properties and Behavior of Magma and Lava

Rock Cycle and Rock Types Homework

Rocks and The Rock Cycle

CHAPTER ROCK WERE FORMED

Rocks and the Rock Cycle notes from the textbook, integrated with original contributions

Igneous and Metamorphic Rock Forming Minerals. Department of Geology Mr. Victor Tibane SGM 210_2013

1. What is the most important agent of chemical weathering on Earth? a. oxygen b. salt c. carbon dioxide d. carbonic acid e. water

Rocks. 3.1 The Rock Cycle. 3.1 The Rock Cycle. 3.1 The Rock Cycle. The Rock Cycle. I. Rocks

IGNEOUS ROCKS. SECTION 5.1 What are igneous rocks?

CHAPTER ROCK WERE FORMED

1. Which mineral is mined for its iron content? A) hematite B) fluorite C) galena D) talc

transform boundary Photograph by Robert E. Wallace, USGS.

Name Class Date STUDY GUIDE FOR CONTENT MASTERY

Prentice Hall EARTH SCIENCE

Answers. Rocks. Year 8 Science Chapter 8

Chapter: Earth Materials

1. Base your answer to the following question on on the photographs and news article below. Old Man s Loss Felt in New Hampshire

EARTH SCIENCE. Geology, the Environment and the Universe. Chapter 5: Igneous Rocks

Rock Star 101. Introduction to Rocks.

Igneous Rock Processes and Identification

8 th Earth Science Chapter 4 Rocks Name Section 1 The Rock Cycle:

ES Chap 5 & 6: Rocks

Rocks. Types of Rocks

*Theory= If all available testing support a hypothesis. *Law= Theory that continually passes all tests over long periods of time.

Foundations of Earth Science, 7e (Lutgens) Chapter 2 Rocks: Materials of the Solid Earth. 2.1 Multiple Choice

I. Uniformitarianism- James Hutton s 2-part theory states: A. The geologic processes now at work were also active in the past B. The present physical

Solid Earth materials:

Igneous Rock Classification, Processes and Identification Physical Geology GEOL 100

2. An electron is the smallest unit of matter that retains the characteristics of an element. a. True

LAB 2 IDENTIFYING MATERIALS FOR MAKING SOILS: ROCK AND PARENT MATERIALS

Lab 2: Rocks Page 1 of 8

Igneous Rocks. Sedimentary Rocks

The Nature of Igneous Rocks

ROCK IDENTIFICATION LAB

Transcription:

Rocks Basic definitions Rock: a naturally occurring solid aggregate of minerals or glass. Igneus Rocks: all rocks that form by cooling and/or crystalization of molten material within the crust or at the Earth s surface. Sedimentary Rocks: all rocks formed by deposition and consolidation of mineral grains and those formed from precipitation of minerals from solution in water. The grains and solutions derived from the breakdown of pre-existing rocks at the Earth s surface. Igneous Rocks Sedimentary Rocks Metamorphic Rocks Metamorphic Rocks: all rocks formed when pre-existing rocks are subjected to high temperatures and/or pressure and interaction with chemically active fluids. The Earth can be considered as being made up of a series of concentric spheres, each made up of materials that differ in terms of composition and mechanical properties. Igneous rocks make up the majority of the Earth s crust. Sedimentary rocks dominate the Earth s surface. The temperature increases from the surface of the crust to the centre of the core (7000 degrees C). 1

Igneous Rocks All rocks that form from cooling of a mass of molten rock (melt or magma). Includes crystalline rocks (interlocking mineral crystals) and glasses (lacking crystalline minerals). Igneous Rock First order classification: based on average crystal size (termed texture). Coarse-grained: 1 mm or larger. Fine-grained: less than 1 mm. Phaneritic: mineral grains can be seen with the unaided eye. Aphanitic: mineral grains cannot be seen with the unaided eye. Coarse-grained igneous rocks are formed as intrusive rock bodies: They crystallize relatively slowly within the Earth s crust. Fine-grained igneous rocks are formed as extrusive rock bodies: They crystallize relatively quickly at or very near the surface of the Earth. In general, the size of the crystals depends on the rate of cooling; the slower the rate of cooling the larger the crystals that form. Magma that is extruded to the Earth s surface is called lava. Many lavas crystallize so quickly that there is no time for the organized structure of crystals to develop. The texture of such rocks is termed glassy and the rocks lack discrete minerals. Gas trapped in the magma when it cools quickly forms bubbles that remain after cooling and solidification; the resulting void spaces in the rock are termed vesicules Obsidian is an igneous rock that cooled very quickly at the Earth s surface and displays a glassy texture and conchoidal fracture. Pumice is a glassy igneous rock that is characterized by many small vesicules. 2

Additional terms related to crystal size: The world s largest crystals: gypsum crystals found in caves near a zinc and silver mine in Mexico. Pegmatite: very coarsegrained igneous rock with crystals exceeding 2.5 cm in size. Porphyritic: large crystals set in a matrix of finer crystals. The large crystals are termed phenocrysts. Igneous rocks are classified more precisely on the basis of the relative proportions of their minerals. Silicic or Felsic rocks: white, grey or pink in colour; rich in quartz, potassium feldspars and sodium plagioclase feldspars and biotite/muscovite. Intermediate rocks: salt and pepper for coarsegrained rocks, dark grey for fine-grained rocks; rich in amphiboles and calcium plagioclase feldspars. Mafic rocks: dark grey to black in colour; rich in calcium plagioclase feldspars and pyroxene. Ultramafic rocks: green to black in colour; rich in olivine. 3

Igneous rock names based on texture and composition. Coarse-grained Fine-grained Silicic or felsic Granite Rhyolite Diorite Andesite Intermediate Gabbro Basalt Mafic Ultramafic Peridotite Komatiite Crystallization from Magma Magmas begin deep within the crust or the upper mantle where temperatures are high enough to melt rock. Geothermal Gradient: the rate of increase in temperature with depth beneath the Earth s surface. On average: 3 C per 100 m depth. The melting or crystallization temperature depends on: The pressure exerted on the material (which depends on the depth of burial). The amount of water that is present within the magma. The chemical composition of the magma. the world's deepest mine, 3,585 m below surface at the East Rand mine, SA. 4

Melting/Crystallization temperature increases with depth beneath the Earth s surface (if the rocks are dry) due to the increase in pressure with depth. Melting of dry rocks will normally not occur beneath continents because temperature do not become sufficiently high. Water, under pressure, substantially reduces the melting temperature. The greater the pressure that is exerted on the water the lower the melting temperature. In the presence of water melting will take place beneath continents. Melting/crystallization temperature varies widely depending on the composition of the magma. Complete melting of a mixture of potassium feldspar (Kspar) and quartz occurs at a minimum of 1000 C when there is 42% Quartz and 58 % K-spar. The melting temperature increases with decreasing quartz to 1300 C for pure K-spar. The melting temperature increases with decreasing K-spar to over 1500 C for pure Quartz. 5

The melting or crystallization temperature depends on: The pressure exerted on the material (which depends on the depth of burial). Some magmas begin within the mantle as semisolid masses. Even though the temperature is very high the extreme pressure inhibits melting. These masses may slowly rise towards the crust due to convection within the mantle. The amount of water that is present within the magma. The chemical composition of the magma. At a depth of about 50 km from the Earth s surface pressure is low enough to allow melting to form a magma. The rising plume of magma remains hotter than the ambient mantle, retaining heat from greater depths. The plume rises into the overlying crust and continues to migrate upwards. It continues to cool as it moves through the crust. 6

Higher in the crust temperatures are lower and the magma cools and crystallizes into a body of igneous rock. If it doesn t cool within the crust it reaches the surface to form a volcano. The temperature at which a mineral crystallizes from a magma depends on its composition. Bowen s Reaction Series describes the sequence in which minerals will crystallize with decreasing temperature in the magma or melt. The rock type that forms from the crystallization of a magma depends on: The initial composition of the magma. The stage at which the minerals crystallized. When a rock heats up the minerals melt in the reverse order to Bowen s Reaction Series. 7

The wide variety of igneous rocks is due to three primary processes: 1. Crystal settling and magmatic differentiation. 2. Assimilation of host rock. 3. Magma mixing. Time 2. As the first crystals begin to form in the magma (olivine) they remove iron and magnesium from the magma, changing the composition of the magma as the crystals settle to the bottom of the magma chamber. 1. Crystal settling and magmatic differentiation. Time 1 While the magma body is first emplaced into the crust it has an initial composition. The first igneous rocks may be mafic rocks with abundant iron and magnesium. Time 3 As successive minerals crystallize, following Bowen s series, the composition of the magma continues to change or differentiate. 2. Assimilation of host rock: if the rock into which the magma has intruded is melted by the high temperatures, its inclusion in the magma will change its composition; the rock type that forms will similarly change. Over the period of crystallization of the magma the types of igneous rock change due to the changing chemical composition of the magma. The last rocks to form with have a felsic or silicic composition, reflecting the composition of the differentiated magma. 8

3. Magma mixing: if two magmas with different compositions become mixed, the resulting magma will have a different composition and different rocks will crystallize from it. Igneous Structures Volcanoes are structures that are produced by extrusive igneous activity (when magma is extruded to the surface). Plutons are solitary masses of igneous rock within the crust. Over millions of years the surface of the crust is eroded away. If the surface rocks are softer than the igneous rocks of the pluton it will form a topographic high as it resists erosion. When many plutons are emplaced into the crust they coalesce to form a larger structure called a batholith. Batholiths form extensive masses of igneous rock that may become exposed at the surface following erosion of the land surface. 9

Exposed batholiths form broad uplands when they are exposed by erosion. Mt. Evans Batholith, Colorado Mt. Rushmore is likely the best known batholith! Smaller intrusive structures commonly extend away from major bodies such as batholiths and plutons. Dikes cut across layered strata that they intrude. Sills intrude along planes that are parallel to associated strata. 10

A vertical dike forms a resistant ridge of igneous rock that intruded softer sedimentary rocks. Sedimentary Rocks Sedimentary rocks include those that are made up of discrete particles of minerals or rock fragments (termed clastic sedimentary rocks) and those made up of interlocking crystals (termed chemical sedimentary rocks). Individual grains in clastic rocks are surrounded by cement (normally of calcite, dolomite or quartz) Igneous Rock Clastic Sedimentary Rock Image by Dr. Roger Bain. http://enterprise.cc.uakron.edu/geology/natscigeo/lectures/igneous/volcano2.htm#intrusions Thin sections are 30 micron (30/1000 mm) thick slices of rock through which light can be transmitted. Click here to see how a thin section is made. http://faculty.gg.uwyo.edu/heller/sed%20strat%20class/sedstratl1/thin_section_mov.htm Weathering, transport and deposition of sediment Sedimentary rocks: composed of the products of weathering of source or parent rocks. Weathering: the process by which a rock breaks down when exposed at or near the Earth s surface. Physical or mechanical weathering involves the physical breakdown of the source rock. Frost wedging, unloading expansion, thermal expansion, biological activity. Solid particles are produced. 11

When a granitic pluton is deep within the crust it is compressed by the great weight of overlying rock. Frost wedging produced the scree or talus at the base of this mountain in the Northwest Territories. When erosion of the land surface exposes the pluton the weight is removed and it expands. As it expands it exfoliates like the skin of an onion into sheets of rock. Tree roots can grow into the fractures in rocks. As they grow they exert considerable pressure and cause the fractures to expand. Eventually the roots may break the surface rocks entirely into large boulders. Chemical weathering takes place when the source rock undergoes chemical reactions with surface water in contact with it. Chemical weathering produces: Solutions. Stable mineral grains (e.g., quartz) as detrital grains. New minerals grains (e.g., clay minerals, oxides). 12

The resistance of igneous minerals to chemical weathering is similar to the Bowen s Reaction Series. The most stable minerals are those that crystallize last (quartz, k- spar and muscovite). Minerals that crystallize under high temperature are more prone to chemical weathering. Solid grains may be transported by: Rivers Wind Glaciers Ocean currents Volcanic explosions Solutions are transported largely by rivers. Clastic sediment: made up of the solid products of weathering. Deposition takes place when medium ceases to move the particles. Clastic sedimentary rocks include: Sandstone Conglomerate Shale Clastic sediment becomes a sedimentary rock following compaction and cementation. Compaction involves the pushing together of the particles by the weight of overlying sediment that is subsequently deposited. Cementation involves the precipitation (crystallization) of minerals that are in solution in waters flowing through the sediment. The precipitate forms a cement in the void spaces between particles and binds them together. Calcite and quartz are common cements in sedimentary rocks. 13

Chemical sediment: made up of material that is transported in solution. Chemical sediment is deposited when material in solution is precipitated Clastic sedimentary rocks are classified on the basis of their average grain size. Sediment Name Rock Name (particle shape) Gravel Conglomerate (rounded) Breccia (angular) Sand Sandstone/Arenite Silt Siltstone/Lutite Clay Claystone/shale Precipitation may take place: Due to changes in water chemistry. Average Grain Size > 2 mm Due to evaporation (e.g., halite). Due to shell production by organisms. Many limestones are made up of calcite produced by organisms. Conglomerate is made up of well-rounded gravel. 2 0.0625 mm 0.0635-0.004 mm <0.004 mm Sandstone: Individual grains can be seen with the naked eye. Breccia is characterized by angular gravel. Siltstone is very fine-grained but feels gritty to the touch. The shape of the gravel indicates that it has not traveled far from where it formed. 14

Shale is smooth to the touch and weathers into thin flat slabs. Chemical sediments are classified on the basis of their chemical composition. Halite (NaCl) and Gypsum (CaSO4 +H20) form by precipitation of salt water. Ions dissolved in water form crystals as the water evaporates. Halite accumulations in Death Valley Halite hopper crystal Gypsum formed in a playa lake. Limestone (CaCO3) forms most commonly by the accumulation of whole and/or broken shell material. Dolomite (MgCO3) commonly forms from limestone when a magnesium ion replaces the calcium ion bonded to the carbonate ion. Gypsum rosettes Limestone and dolomite are commonly very fossiliferous. 15

The reaction of limestone to hydrochloric acid. CaCO 3 + 2H + Ca 2+ + CO 2 (gas) + H 2 O Primary Sedimentary Structures Many clastic rocks, limestones and dolomites display structures that formed at the time that the sediment was deposited. Sun cracks: formed when previously wet muds dry out to form a polygonal pattern of cracks. Modern sun cracks Sun cracks on an ancient sandstone Wave ripples are straight-crested, symmetrical mounds of sand that form when waves act on the water above a deposit of sand. They indicate that the sediment was laid down in an environment that was influenced by waves (a lake or sea). Current ripples are asymmetric in cross section and have short, curved crests. The upstream side has a gentle slope whereas the downstream side is steep. Wave ripples on a vertical rock face. 16

Metamorphic Rocks Metamorphic rocks form when pre-existing rocks are subjected to high temperatures and/or pressure and interaction with chemically active fluids. Metamorphic Grade is reflected by Index minerals: minerals that form under a limited range of pressures and temperatures. Original minerals may not be stable under the changed P/T conditions so new minerals form that are stable. Metamorphic Grade: a measure of the degree to which a rock has changed during metamorphism. Types of Metamorphism Burial metamorphism: occurs when rocks become buried within the crust due to subsequent deposition. Contact metamorphism: takes place when an igneous intrusion heats up the rocks into which it intrudes. Only rocks near the intrusion are affected. As they are buried deeper the temperature and pressure increases. Metamorphism begins at temperatures above 200 C (about 8 km depth). 17

The type of rock that forms with contact metamorphism varies with the composition of the original rock and the distance from the intrusion (cooling away from the intrusion). The zone of contact metamorphism is termed a metamorphic aureole. Sandstone Quartzite Limestone Marble 18

Regional Metamorphism: The most common metamorphic rocks; formed over extensive areas due to high temperatures and pressures associated with the interaction between tectonic plates. Under a directed pressure crystals that grow will grow more readily in the direction that is perpendicular to the applied force. Unlike burial metamorphism, pressures have a preferred direction. Foliation: the tendency in regional metamorphosed rocks to have minerals that are preferentially oriented parallel to each other. A directed pressure may align minerals into an orientation that is perpendicular to the applied force. Pressure and temperature ranges for different types of metamorphism. 19

Burial and Contact metamorphic rocks are not foliated and include: View pictures of the metamorphic rocks described below at: http://www.gpc.edu/~pgore/geology/geo101/meta.htm A site created by Pamela J.W. Gore of Georgia Perimeter College Quartzite: metamorphosed sandstone. Marble: metamorphosed limestone. Hornfels: a general term for low pressure metamorphic rocks. Foliated rocks formed by Regional Metamorphism (in order of increasing metamorphic grade): Slate: produced by low grade metamorphism of shale. Schist: a metamorphic rock with abundant large micas minerals up to several millimetres across. Phyllite: characterized by a silky sheen due to the presence of very fine grained muscovite. Pamela Gore points to the similarity of the sheen to frosted eye shadow and notes that many cosmetics have ground up muscovite to produce such a sheen. Gneiss: (pronounced "nice") - a banded rock characterized by alternating layers of dark and light minerals. The dark layers commonly contain biotite, and the light layers commonly contain quartz and feldspar. 20

Folded gneiss on Greenland Igneous Rocks Migmatite: a very high grade metamorphic rock that is intermediate between metamorphic and igneous rocks (i.e., they have undergone partial melting). Sedimentary Rocks Metamorphic Rocks The geologic cycle A concept that relates the three rock types through processes that act in their formation. Involves: Cooling of magma (to form igneous rocks). Heat and pressure inside the earth (metamorphism or melting to form a new magma). Uplift of buried rocks by tectonic processes (e.g., mountain building). The geologic cycle. Weathering: the breakdown of a rock exposed at the Earth s surface. Transport of weathering products (e.g., by rivers). Deposition of transported material (as loose sediment) to where it can no longer be transported. 21

The geologic cycle. Burial and compaction: covered by subsequent deposition and pushed into close contact due to the weight of overlying sediment. Cementation: the binding together of sedimentary particles by minerals that act as a cement. 22

23