News from High-Energy Cosmic Rays and Neutrinos. Michael Kachelrieß NTNU, Trondheim

Similar documents
The Escape Model. Michael Kachelrieß NTNU, Trondheim. with G.Giacinti, O.Kalashev, A.Nernov, V.Savchenko, D.Semikoz

Galactic Neutrinos. Michael Kachelrieß. NTNU, Trondheim

Charged Cosmic Rays and Neutrinos

Multi-Messenger Astonomy with Cen A?

Cosmic Rays, Photons and Neutrinos

The 2 Icecube PeV events [A. ] Michael Kachelrieß (NTNU Trondheim) Cosmic Rays IPM School, Tehran / 23

TeV gamma-rays from UHECR sources 22 radio log10(e /ev ) 16 photon horizon γγ e + e CMB 14 IR kpc 10kpc 100kpc M pc Virgo 10M pc 100M pc G

STATUS OF ULTRA HIGH ENERGY COSMIC RAYS

Astroparticle Physics. Michael Kachelrieß NTNU, Trondheim

Cosmic Ray Astronomy. Qingling Ni

Lower bound on the extragalactic magnetic field

Extensive Air Shower and cosmic ray physics above ev. M. Bertaina Univ. Torino & INFN

Cosmic Rays in large air-shower detectors

A few grams of matter in a bright world

The Galactic diffuse gamma ray emission in the energy range 30 TeV 3 PeV

Air Shower Measurements from PeV to EeV

Probing the extragalactic cosmic rays origin with gamma-ray and neutrino backgrounds

Cosmic-ray energy spectrum around the knee

PeV Neutrinos from Star-forming Regions. Hajime Takami KEK, JSPS Fellow

Ultra-High Energy Cosmic Rays (III)

Cosmogenic neutrinos II

On the GCR/EGCR transition and UHECR origin

Neutrino Oscillations and Astroparticle Physics (5) John Carr Centre de Physique des Particules de Marseille (IN2P3/CNRS) Pisa, 10 May 2002

Dark Matter in the Universe

IceCube: Ultra-high Energy Neutrinos

Mass Composition Study at the Pierre Auger Observatory

Ultra- high energy cosmic rays

Gamma-ray bursts as the sources of the ultra-high energy cosmic rays?

PEV NEUTRINOS FROM THE PROPAGATION OF ULTRA-HIGH ENERGY COSMIC RAYS. Esteban Roulet CONICET, Bariloche, Argentina

ULTRA-HIGH ENERGY COSMIC RAY COMPOSITION and MUON CONTENT vs. HADRONIC MODELS. Esteban Roulet Bariloche, Argentina

UHECRs sources and the Auger data

Studies of Ultra High Energy Cosmic Rays with the Pierre Auger Observatory

Gamma-ray and neutrino diffuse emissions of the Galaxy above the TeV

UHECR autocorrelation function after Auger

RECENT RESULTS FROM THE PIERRE AUGER OBSERVATORY

Charged-particle and gamma-ray astronomy: deciphering charged messages from the world s most powerful

An Auger Observatory View of Centaurus A

OVERVIEW OF THE RESULTS

High-energy cosmic rays

Extensive Air Showers and Particle Physics Todor Stanev Bartol Research Institute Dept Physics and Astronomy University of Delaware

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

Detection of Ultra-high energy neutrinos The First Light of the high energy neutrino astronomy

ULTRA HIGH ENERGY COSMIC RAYS WHERE DO WE STAND AFTER 10 YEARS AT THE PIERRE AUGER OBSERVATORY

High energy events in IceCube: hints of decaying leptophilic Dark Matter?

Seeing the moon shadow in CRs

Ultra High Energy Cosmic Rays: Observations and Analysis

UHECR: Acceleration and Propagation

arxiv: v2 [astro-ph.he] 5 Aug 2014

Air showers in IceCube. Cosmic rays Neutrinos Gamma rays

Ultra High Energy Cosmic Rays What we have learnt from. HiRes and Auger. Andreas Zech Observatoire de Paris (Meudon) / LUTh

IceCube neutrinos and the origin of cosmic-rays. E. Waxman Weizmann Institute of Science

Gamma rays from supernova remnants in clumpy environments.! Stefano Gabici APC, Paris

MULTIMESSENGER APPROACH:Using the Different Messengers

Latest results and perspectives of the KASCADE-Grande EAS facility

arxiv: v1 [astro-ph.he] 8 Apr 2015

Implications of recent cosmic ray results for ultrahigh energy neutrinos

Astroparticle Physics with IceCube

Antimatter from Supernova Remnants

Gamma ray emission from supernova remnant/molecular cloud associations

High Energy Cosmic Ray Interactions

ON PROBABLE CONTRIBUTION OF NEARBY SOURCES TO ANISOTROPY AND SPECTRUM OF COSMIC RAYS AT TEV-PEV-ENERGIES

Measurement of the cosmic ray spectrum and chemical composition in the ev energy range

Absorption and production of high energy particles in the infrared background

arxiv: v1 [astro-ph.he] 28 Jan 2013

Ultra-High Energy Cosmic Rays & Neutrinos above the Terascale

Questions 1pc = 3 ly = km

Looking Beyond the Standard Model with Energetic Cosmic Particles

SEARCHES OF VERY HIGH ENERGY NEUTRINOS. Esteban Roulet CONICET, Centro Atómico Bariloche

Blazars as the Astrophysical Counterparts of the IceCube Neutrinos

IceCube Results & PINGU Perspectives

Secondary particles generated in propagation neutrinos gamma rays

Ultra-High Energy Cosmic Rays and Astrophysics. Hang Bae Kim Hanyang University Hangdang Workshop,

Cosmic Rays in large air-shower detectors

From the Knee to the toes: The challenge of cosmic-ray composition

Neutrino Astronomy fast-forward

Implication of AMS-02 positron fraction measurement. Qiang Yuan

EeV Neutrinos in UHECR Surface Detector Arrays:

Interpretation of cosmic ray spectrum above the knee measured by the Tunka-133 experiment

Ultra High Energy Cosmic Rays I

Ultra-High Energy Cosmic Rays and the GeV-TeV Diffuse Gamma-Ray Flux

THE EHE EVENT AND PROSPECTS FROM THE ICECUBE NEUTRINO OBSERVATORY. Lu Lu 千葉大

Cosmic Rays: high/low energy connections

Possible Multi-Messenger Sources of Gravitational Waves and Particle Radiation

Ultrahigh Energy Cosmic Rays propagation II

The air-shower experiment KASCADE-Grande

Extremely High Energy Neutrinos

The Pierre Auger Observatory Status - First Results - Plans

A New View of the High-Energy γ-ray Sky with the Fermi Telescope

Particle Physics Beyond Laboratory Energies

Recent Results from the KASCADE-Grande Data Analysis

High Energy Particle Production by Space Plasmas

Possible sources of very energetic neutrinos. Active Galactic Nuclei

Origin of cosmic rays

Ultra-High Energy Cosmic Rays: Results, and Prospects

Short Course on High Energy Astrophysics. Exploring the Nonthermal Universe with High Energy Gamma Rays

Understanding High Energy Neutrinos

Particle Acceleration in the Universe

The Pierre Auger Observatory

PoS(NOW2016)041. IceCube and High Energy Neutrinos. J. Kiryluk (for the IceCube Collaboration)

Ultrahigh Energy cosmic rays II

Transcription:

News from High-Energy Cosmic Rays and Neutrinos Michael Kachelrieß NTNU, Trondheim []

Introduction Outline of the talk 1 Introduction Is progress slow? Results on Composition γ s and ν s as CR secondaries 2 Origin of the CR knee: Escape model Fluxes of groups of CR nuclei Transition to extragalactic CRs Anisotropy 3 IceCube excess Disentangling signal/prompt/background Characteristica of proposed sources 4 Conclusions Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 2 / 53

Introduction Outline of the talk 1 Introduction Is progress slow? Results on Composition γ s and ν s as CR secondaries 2 Origin of the CR knee: Escape model Fluxes of groups of CR nuclei Transition to extragalactic CRs Anisotropy 3 IceCube excess Disentangling signal/prompt/background Characteristica of proposed sources 4 Conclusions Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 2 / 53

Introduction Outline of the talk 1 Introduction Is progress slow? Results on Composition γ s and ν s as CR secondaries 2 Origin of the CR knee: Escape model Fluxes of groups of CR nuclei Transition to extragalactic CRs Anisotropy 3 IceCube excess Disentangling signal/prompt/background Characteristica of proposed sources 4 Conclusions Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 2 / 53

Introduction History 1912: Victor Hess discovers cosmic rays Two key questions what are their sources? how do they accelerate? Hess and Kolhoerster s results: 80 excess ionization 60 40 20 0-1 2 3 4 5 6 7 8 9 altitude/00m Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 3 / 53

Introduction History 2 years later: no definite answers yet Why progress has been slow? 1 CRs diffuse in magnetic fields no astronomy possible 2 only indirect detection > 14 ev composition uncertain Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 4 / 53

Introduction History 2 years later: no definite answers yet Why progress has been slow? 1 CRs diffuse in magnetic fields no astronomy possible 2 only indirect detection > 14 ev composition uncertain How to overcome these problems? 1 Multi-messenger astronomy, γ: distinguish hadronic from leptonic, only below TeV ν: low event rates requires km 3 detectors Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 4 / 53

Introduction History 2 years later: no definite answers yet Why progress has been slow? 1 CRs diffuse in magnetic fields no astronomy possible 2 only indirect detection > 14 ev composition uncertain How to overcome these problems? 1 Multi-messenger astronomy, γ: distinguish hadronic from leptonic, only below TeV ν: low event rates requires km 3 detectors 2 improve experiments: combining different techniques (KASCADE-Grande, PAO, TA) models: new data from LHC (EPOS-LHC, QGSJET-II-04) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 4 / 53

Introduction Is Progress slow? Composition of Galactic CRs: traditional view [Gaisser, Stanev, Tilav 13 ] sr -1 s -1 ] 4 3 Proton_total He_total C_total O_total Fe_total Z=53 group Z=80 group dn/de [GeV 2.6 E 1.6 m -2 2 1 3 Pamela Proton Pamela He CreamII Proton CreamII He CreamII C CreamII O CreamII Mg CreamII Si CreamII Fe 4 5 6 Primary Energy, E [GeV] 7 8 9 11 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 5 / 53

Introduction Is Progress slow? Composition of Galactic CRs: KASCADE-Grande 2013 ) 1.5 sr -1 s -1 ev -2 / (m 2.5 E 17 16 EAS-TOP (Astrop.Phys.(1999)1) Tibet-III, QGSJET 01 (ApJ678(2008)1165) GAMMA (ICRC 2011) IceTop (arxiv:1202.3039v1) TUNKA-133 (ICRC 2011) Yakutsk (NewJ.Phys11(2008)065008) KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183) Akeno (J.Phys.G18(1992)423) AGASA (ICRC 2003) HiResI (PRL0(2008)11) HiResII (PRL0(2008)11) AUGER (arxiv:17:4809) AUGER AMIGA infill (ICRC 2011) diff. flux dj/de 15 KASCADE, all-part., QGSJET II (see Appendix A) KASCADE, light (p), QGSJET II (see Appendix A) KASCADE, medium (He+C+Si), QGSJET II (see Appendix A) KASCADE, heavy (Fe), QGSJET II (see Appendix A) KASCADE-Grande, all-part., QGSJET II (this work) KASCADE-Grande, light (p), QGSJET II (this work) KASCADE-Grande, medium (He+C+Si), QGSJET II (this work) KASCADE-Grande, heavy (Fe), QGSJET II (this work) 15 16 17 primary energy E/eV 18 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 5 / 53

Introduction Is Progress slow? Composition of Galactic CRs: Auger [arxiv:1409.5083 ] 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.013 p = 0.235 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 QGSJET II-04 QGSJET II-04 QGSJET II-04 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p < -3 p = 0.326 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 EPOS-LHC EPOS-LHC EPOS-LHC 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.776 p = 0.769 0 0 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 5 / 53

Introduction Is Progress slow? Composition of Galactic CRs: Auger [arxiv:1409.5083 ] 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.013 p = 0.235 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 QGSJET II-04 QGSJET II-04 QGSJET II-04 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p < -3 p = 0.326 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 EPOS-LHC EPOS-LHC EPOS-LHC 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 composition 300 6 17 5 18 ev consistent with N 200 p < -4 p = 0.776 p = 0.769 O( 0 50% p, 50% He+N, < 20%Fe ) 0 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] 500 600 700 800 900 00 X max [g/cm 2 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 5 / 53

Introduction Is Progress slow? Composition of Galactic CRs: 600 Sibyll 2.1 Sibyll 2.1 Sibyll 2.1 Fe N 500 He p Auger 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p = 0.013 p = 0.235 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 QGSJET II-04 QGSJET II-04 QGSJET II-04 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 N 300 200 p < -4 p < -3 p = 0.326 0 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 900 00 600 EPOS-LHC EPOS-LHC EPOS-LHC 500 400 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 log(e/ev) = 17.8-17.9 composition 300 6 17 5 18 ev consistent with N p < -4 p = 0.776 p = 0.769 200 O( 0 50% p, 50% He+N, < 20%Fe ) 0 500 600 700 800 900 00 500 600 700 800 900 00 500 600 700 800 early transition X max [g/cm 2 ] from Galactic X max [g/cm to 2 ] extragalactic X max CRs [g/cm 2 ] 900 00 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 5 / 53

Introduction Is Progress slow? Transition to extragalactic CRs anisotropy limits dipole quadrupole Upper Limit - Dipole Amplitude 1-1 -2 Z=1 Z=26 1 E [EeV] Upper Limit - Amplitude λ + 1-1 -2 Z=1 Z=26 1 E [EeV] dominant light Galactic composition around E = 18 ev excluded [Giacinti, MK, Semikoz, Sigl ( 12), PAO 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 6 / 53

Introduction Pion peak The pion peak CR scattering on gas or photons: pp mesons, baryons e, γ, ν, p the lightest mesons, π 0 and π ±, are produced most often decays: π 0 2γ and π ± 3ν + e ± Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 7 / 53

Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 8 / 53

Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back π 0 is moving: decay isotropic in rest-frame dn/deγ =const. Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 8 / 53

Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back π 0 is moving: decay isotropic in rest-frame dn/deγ =const. min./max. photon energies Emin max = γ m π 0 2 (1 ± β) = m π 0 2 1 ± β 1 β Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 8 / 53

Introduction Pion peak The pion peak π 0 γ(k 1 ) + γ(k 2 ) at rest: energy conservation: mπ c 2 /2 = E 1 = E 2 momentum conservation: k1 = k 2 moving back-to-back π 0 is moving: decay isotropic in rest-frame dn/deγ =const. min./max. photon energies Emin max = γ m π 0 2 (1 ± β) = m π 0 2 geometric mean Emin E max = m π 0 2 1 ± β 1 β Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 8 / 53

Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 9 / 53

Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 9 / 53

Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 9 / 53

Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 9 / 53

Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 9 / 53

Introduction Pion peak The pion peak n γ ln(m π /2) ln(e γ ) independent of velocity distribution of pions: symmetric photon distribution w.r.t. m π 0/2 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 9 / 53

Introduction Pion peak The pion peak: pp interactions n γ ln(m π /2) ln(e γ ) low threshold & approx. Feynman scaling Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 / 53

Introduction Pion peak The pion peak: pp interactions n γ ln(m π /2) ln(e γ ) low threshold & approx. Feynman scaling dn γ /de dn CR /de Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 / 53

Introduction Pion peak The pion peak: pγ interactions n γ ln(m π /2) ln(e γ ) threshold E th > m π m p /ε γ 16 ev with ε γ < ev Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 11 / 53

Introduction Pion peak The pion peak: pγ interactions n γ ln(m π /2) ln(e γ ) threshold E th > m π m p /ε γ 16 ev with ε γ < ev dn γ /de { E 1 dn CR /de for E < E th for E > E th Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 11 / 53

Introduction Pion peak The pion peak: Neutrinos from pp and pγ interactions Only change from px Y γ to px Y ν: two mass scales mπ, m µ two boxes Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 12 / 53

Introduction Pion peak The pion peak: Neutrinos from pp and pγ interactions Only change from px Y γ to px Y ν: two mass scales mπ, m µ two boxes for E ν m π, m µ the same picture Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 12 / 53

Introduction Pion peak The pion peak: Neutrinos from pp and pγ interactions Only change from px Y γ to px Y ν: two mass scales mπ, m µ two boxes for E ν m π, m µ the same picture for a single source: pp: dnν /de dn CR /de pγ: dn ν /de { E 1 dn CR /de for E < E th for E > E th steeper spectra for pγ as result of Emax distribution and evolution Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 12 / 53

Introduction Pion peak Observing the π 0 bump in SNR W44: - W44 s -1 ) -2 dn/de (erg cm 2 E -11-12 Best-fit broken power law Fermi-LAT AGILE (Giuliani et al. 2011) 0 π -decay Bremsstrahlung Bremsstrahlung with Break 8 9 Energy (ev) 11 12 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 13 / 53

Introduction Pion peak Observing the π 0 bump in SNR W44: - W44 s -1 ) -2 dn/de (erg cm 2 E -11-12 Best-fit broken power law Fermi-LAT AGILE (Giuliani et al. 2011) π 0 -decay Bremsstrahlung Bremsstrahlung with Break 8 9 Energy (ev) 11 12 strong evidence for proton acceleration Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 13 / 53

Knee explanations Cosmic Ray Knee: steepening γ 0.4 at few 15 ev. ) 1.5 s -1 sr -1 ev -2 J(E) (m 19 18 17 2 RHIC (p-p) HERA (γ-p) Equivalent c.m. energy 3 Tevatron (p-p) 4 7 TeV 14 TeV LHC (p-p) s pp (GeV) 5 HiRes-MIA HiRes I HiRes II Auger 2009 6 2.5 Scaled flux E 16 15 14 ATIC PROTON RUNJOB KASCADE (QGSJET 01) KASCADE (SIBYLL 2.1) KASCADE-Grande 2009 Tibet ASg (SIBYLL 2.1) 13 13 14 15 16 17 18 19 Energy 20 (ev/particle) 21 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 14 / 53

Knee explanations Cosmic Ray Knee: 3 explanations. ) 1.5 19 2 Equivalent c.m. energy 3 4 s pp (GeV) 5 6 s -1 sr -1 ev -2 J(E) (m 18 17 RHIC (p-p) HERA (γ-p) Tevatron (p-p) 7 TeV 14 TeV LHC (p-p) HiRes-MIA HiRes I HiRes II Auger 2009 2.5 Scaled flux E 16 15 ATIC KASCADE (QGSJET 01) 14 PROTON RUNJOB KASCADE (SIBYLL 2.1) KASCADE-Grande 2009 Tibet ASg (SIBYLL 2.1) 13 13 14 15 16 17 18 19 Energy 20 21 (ev/particle) change of interactions at multi-tev energies: excluded by LHC Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 15 / 53

Knee explanations Cosmic Ray Knee: 3 explanations. change of interactions at multi-tev energies: excluded by LHC change of propagation at R L l coh or E c ZeB l coh : change in diffusion from D(E) E 1/3 to Hall diffusion D(E) E small-angle scattering D(E) E 2 something intermediate? unavoidable effect, but for B few µg and l coh 30 pc at too high energy: E c /Z 15 B l c µg pc Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 15 / 53

Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 0 p He C O Fe total 11 12 13 14 15 16 17 18 19 20 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 16 / 53

Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 0 p He C O Fe total 11 12 13 14 15 16 17 18 19 20 E/eV i = 1,...,3 types of CR sources, with slopes α A,i, rel. fractions f A,i Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 16 / 53

Knee explanations Cosmic Ray Knee: 3 explanations maximal rigidity of dominant CR sources e.g. Hillas model E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 0 p He C O Fe total 11 12 13 14 15 16 17 18 19 20 E/eV i = 1,...,3 types of CR sources, with slopes α A,i, rel. fractions f A,i no reliable estimate of E max,i, α A,i, and f A,i fit of many-parameter model to two observables: I tot and ln(a) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 16 / 53

Knee explanations Cosmic Ray Knee: 3 explanations maximal energy: Gaisser, Stanev & Tilav version [1303.3665 ] 4 3.5 3 2.5 <lna> 2 1.5 1 IC40/IT40 Kascade Tunka-133 HiResMia HiRes Auger 0.5 0 6 TA H4a H3a Global Fit Global Fit with Population 4 7 8 Primary Energy, E [GeV] 9 11 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 17 / 53

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 18 / 53

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 18 / 53

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 18 / 53

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 observed energy spectrum of primaries: injection: dn/de E α observed: dn/de E α β α = 3/2 and β = 1/2 simplest combination, but degeneracies Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 18 / 53

Knee explanations Propagation in turbulent magnetic fields: Galactic magnetic field: regular + turbulent component turbulent: fluctuations on scales l min AU to l max ( 150) pc CRs scatter mainly on field fluctuations B(k) with kr L 1. slope of power spectrum P(k) k α determines energy dependence of diffusion coefficient D(E) E β as β = 2 α: Kolmogorov α = 5/3 β = 1/3 Kraichnan α = 3/2 β = 1/2 observed energy spectrum of primaries: injection: dn/de E α observed: dn/de E α β α = 3/2 and β = 1/2 simplest combination, but degeneracies anisotropy δ = 3D ij i ln(n) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 18 / 53

Knee explanations Our approach: use model for Galactic magnetic field calculate trajectories x(t) via F L = qv B. Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 19 / 53

Knee explanations Our approach: use model for Galactic magnetic field calculate trajectories x(t) via F L = qv B. as preparation, let s calculate diffusion tensor in pure, isotropic turbulent magnetic field Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 19 / 53

Knee explanations Eigenvalues of D ij = x i x j /(2t) for E = 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D 0.1 1 0 Time (kyr) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 20 / 53

Knee explanations Eigenvalues of D ij = x i x j /(2t) for E = 15 ev D(1PeV) (cm 2 /s) 1e+29 1e+28 d 3 d 2 d 1D 0.1 1 0 Time (kyr) asymptotic value is smaller than extrapolated Galprop value [Giacinti, MK, Semikoz ( 12) ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 21 / 53

Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 22 / 53

Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) X(E) in g/cm 2 1 0.1 β=1, L=pc β=0.1, L=pc 0.01 β=1/8, L=25pc δ=1/3 AMS-02 (a) AMS-02 (b) 0.001 Jones 11 12 13 14 15 16 17 E/Z in ev Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 22 / 53

Knee explanations Knee from Cosmic Ray Escape l coh and regular field B(x) fixed from observations LOFAR: lcoh < pc in disc determine magnitude of random B rms (x) from grammage X(E) X(E) in g/cm 2 1 0.1 β=1, L=pc β=0.1, L=pc 0.01 β=1/8, L=25pc δ=1/3 AMS-02 (a) AMS-02 (b) Jones 0.001 11 12 13 14 15 16 17 E/Z in ev prefers weak random fields fluxes I A (E) of all isotopes fixed by low-energy data Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 22 / 53

Knee explanations Galactic CRs: KASCADE-Grande 2013 ) 1.5 sr -1 s -1 ev -2 / (m 17 16 EAS-TOP (Astrop.Phys.(1999)1) Tibet-III, QGSJET 01 (ApJ678(2008)1165) GAMMA (ICRC 2011) IceTop (arxiv:1202.3039v1) TUNKA-133 (ICRC 2011) Yakutsk (NewJ.Phys11(2008)065008) KASCADE-Grande, QGSJET II (Astrop.Phys.36(2012)183) Akeno (J.Phys.G18(1992)423) AGASA (ICRC 2003) HiResI (PRL0(2008)11) HiResII (PRL0(2008)11) AUGER (arxiv:17:4809) AUGER AMIGA infill (ICRC 2011) diff. flux dj/de E 2.5 15 KASCADE, all-part., QGSJET II (see Appendix A) KASCADE, light (p), QGSJET II (see Appendix A) KASCADE, medium (He+C+Si), QGSJET II (see Appendix A) KASCADE, heavy (Fe), QGSJET II (see Appendix A) KASCADE-Grande, all-part., QGSJET II (this work) KASCADE-Grande, light (p), QGSJET II (this work) KASCADE-Grande, medium (He+C+Si), QGSJET II (this work) KASCADE-Grande, heavy (Fe), QGSJET II (this work) 15 16 17 primary energy E/eV 18 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 23 / 53

Knee explanations Knee from Cosmic Ray Escape: energy spectra protons from X(E): E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 000 00 B=0.1 B=1 KASCADE-Grande 0 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 24 / 53

Knee explanations Knee from Cosmic Ray Escape: He energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 12 11 PAMELA 2011 CREAM-2011 KASCADE Grande KASCADE 2013 He 5 pc 2.55 130 2.55 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 25 / 53

Knee explanations Knee from Cosmic Ray Escape: CNO energy spectra 13 E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 12 11 KASCADE Grande CNO KASCADE 2013 CREAM C+O 9 CNO 25 pc 2.25 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 1e+18 1e+19 E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 25 / 53

Knee explanations Knee from Cosmic Ray Escape: total energy spectra E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 13 12 11 Tibet KASCADE Grande Auger 2013 P He CNO Si Fe total 14 15 16 17 18 19 20 E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 25 / 53

Knee explanations Transition to extragalactic CRs E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 13 12 11 Tibet KASCADE Grande Auger 2013 P 2.7 He 2.57 CNO 25 2.25 Si+Mg+Fe 25 pc Extra-Galactic total 14 15 16 17 18 19 20 E [ev] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 26 / 53

Knee explanations Transition to extragalactic CRs E 2.5 F(E) [ev 2.5 /cm 2 /s/sr] 13 12 11 Tibet KASCADE Grande Auger 2013 P 2.7 He 2.57 CNO 25 2.25 Si+Mg+Fe 25 pc Extra-Galactic total 14 15 16 17 18 19 20 E [ev] at E 2 17 ev: F gal (E) : F exgal (E) = 1 : 1 at E 2 18 ev: F gal (E) : F exgal (E) = 0 : 1 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 26 / 53

Knee explanations Knee from Cosmic Ray Escape: ln(a) ln(a) 4 3.5 3 2.5 2 1.5 1 0.5 KASCADE-Grande KASCADE IceCube TUNKA Auger 0% exgal p p/fe exgal. mix 0 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 27 / 53

Knee explanations Knee from Cosmic Ray Escape: ln(a) ln(a) 4 3.5 3 2.5 2 1.5 1 0.5 KASCADE-Grande KASCADE IceCube TUNKA Auger 0% exgal p p/fe exgal. mix 0 1e+15 1e+16 1e+17 1e+18 1e+19 1e+20 E/eV exgal. mix: 60% p, 25% He, 15% N Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 27 / 53

Knee explanations Knee from Cosmic Ray Escape: dipole anisotropy 1 0.1 dipole EAS-TOP IceCube PAO dipole 0.01 0.001 0.0001 14 15 16 17 18 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 28 / 53

Knee explanations Knee from Cosmic Ray Escape: dipole anisotropy Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 28 / 53

IceCube Neutrinos IceCube [ ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 29 / 53

IceCube Neutrinos Icecube: 2 events presented at Neutrino 2012 2 cascade events close to E min = 15 ev, bg = 0.14 Two events passed the selection criteria 2 events / 672.7 days - background (atm. + conventional atm. ) expectation 0.14 events preliminary p-value: 0.0094 (2.36 Run119316-Event36556705 Jan 3 rd 2012 NPE 9.628x 4 Number of Optical Sensors 312 CC/NC interactions in the detector MC Run118545-Event63733662 August 9 th 2011 NPE 6.9928x 4 Number of Optical Sensors 354 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 30 / 53 8

IceCube Neutrinos Icecube: prompt neutrino analysis [A. Schukraft, NOW2012 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 31 / 53

IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 32 / 53

IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 32 / 53

IceCube Neutrinos IceCube events: 2 years 28 events Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 33 / 53

IceCube Neutrinos IceCube events: 3 years 36 events Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 33 / 53

IceCube Neutrinos Column density of gas [Evoli, Grasso, Maccione 07 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 34 / 53

IceCube Neutrinos Diffuse ν flux from Galactic plane [Evoli, Grasso, Maccione 07 ] averaged over 1,2,5 degrees Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 35 / 53

IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 36 / 53

IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? flux is large, close to Waxman-Bahcall estimate cascade limit: slope is steepening, α 2.3 2.5, conflict? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 36 / 53

IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? flux is large, close to Waxman-Bahcall estimate cascade limit: slope is steepening, α 2.3 2.5, conflict? CR energies E p 20E ν up to few 16 ev, high for Galactic CRs lowish for cosmogenic, AGN, GRB Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 36 / 53

IceCube Neutrinos IceCube events: specifications for candidate sources 36 events with 14 bg: flukes are possible... anisotropies event cluster around GC enhancement close to Galactic plane gone? flux is large, close to Waxman-Bahcall estimate cascade limit: slope is steepening, α 2.3 2.5, conflict? CR energies E p 20E ν up to few 16 ev, high for Galactic CRs lowish for cosmogenic, AGN, GRB initial flavor ratio consistent with 1:1:1? Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 36 / 53

IceCube Neutrinos Flavour ratio ratio R = N sh /N tr (N e + N τ )/N µ 21/7 consistent with 1:1:1 including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent 14 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 37 / 53

IceCube Neutrinos Flavour ratio ratio R = N sh /N tr (N e + N τ )/N µ 21/7 consistent with 1:1:1 including atm. bg. favors (weakly) 1:0:0 at source [Mena, Palomares, Vincent 14 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 37 / 53

Astrophysical sources Sources of high-energy neutrinos Galactic sources: Galactic plane and bulge SNR hypernova, GRB micro-quasar,... Extragalactic sources: diffuse flux from normal/starburst galaxies cosmogenic neutrinos diffuse flux from AGN GRB single AGN,... Dark matter decays, topological defects Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 38 / 53

Astrophysical sources Diffuse extragalactic flux Diffuse ν flux from normal and starburst galaxies 5 E 2 ν Φ ν [GeV/cm2 s sr] 6 7 8 AMANDA(ν µ ); Baikal(ν e ) Star Bursts 0.1 km 2 WB Bound 9 Atmospheric 1 km 2 GZK 3 5 7 9 11 E ν [GeV] [Loeb, Waxman 06 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 39 / 53

Astrophysical sources Diffuse extragalactic flux Diffuse ν flux from normal and starburst galaxies 5 E 2 ν Φ ν [GeV/cm2 s sr] 6 AMANDA(ν µ ); Baikal(ν e ) 7 Star Bursts 8 0.1 km 2 WB Bound Atmospheric 1 km 2 GZK 9 3 5 7 9 11 E ν [GeV] too optimistic? fraction of starbust galaxies? all calorimetric? [Loeb, Waxman 06 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 39 / 53

Astrophysical sources Diffuse extragalactic flux Reminder: The photon horizon 22 radio 20 18 log(e/ev) 16 photon horizon γγ e + e CMB 14 IR 12 kpc kpc 0kpc Mpc Mpc 0Mpc Gpc Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 40 / 53

Astrophysical sources Cascade spectrum Development of the elmag. cascade: Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 41 / 53

Astrophysical sources Cascade spectrum Development of the elmag. cascade: analytical estimate: [Strong 74, Berezinsky, Smirnov 75 ] K(E/ε X ) 3/2 at E ε X J γ (E) = K(E/ε X ) 2 at ε X E ε a 0 at E > ε a three regimes: Thomson cooling: E γ = 4 ε bb Ee 2 3 m 2 e 0 MeV ( ) 2 Ee 1TeV plateau region: ICS Eγ E e above pair-creation threshold smin = 4E γ ε bb = 4m 2 e : flux exponentially suppressed Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 41 / 53

Astrophysical sources Cascade spectrum Cascade limit: for pp interactions, α = 2.1 E 2 J(E) [ev/cm 2 s sr] 000 00 0 gamma nu Fermi EGRB 1 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 42 / 53

Astrophysical sources Cascade spectrum Cascade limit: for pp interactions, α = 2.3 E 2 J(E) [ev/cm 2 s sr] 000 00 0 gamma nu Fermi EGRB 1 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 42 / 53

Astrophysical sources Cascade spectrum Cascade limit: for pp interactions, α = 2.5 E 2 J(E) [ev/cm 2 s sr] 000 00 0 gamma nu Fermi EGRB 1 1e+ 1e+11 1e+12 1e+13 1e+14 1e+15 1e+16 1e+17 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 42 / 53

Astrophysical sources Cascade spectrum Cascade limit: pp vs. pγ interactions pp interactions: no way to reduce low-energy secondaries for α ν > 2.3 problems with EGRB Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 43 / 53

Astrophysical sources Cascade spectrum Cascade limit: pp vs. pγ interactions pp interactions: no way to reduce low-energy secondaries for α ν > 2.3 problems with EGRB pγ interactions: slope below Eth differs can be modified by max. energy & redshift evolution cascades in source can be modified Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 43 / 53

Astrophysical sources Cascade spectrum Cascade limit: pp vs. pγ interactions pp interactions: no way to reduce low-energy secondaries for α ν > 2.3 problems with EGRB pγ interactions: slope below Eth differs can be modified by max. energy & redshift evolution cascades in source can be modified successful paradigm: Stecker model Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 43 / 53

Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs: X = 30g/cm 2 E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 00 0 1 0.1 Hillas Polygonato Escape 0.01 11 12 13 14 15 16 17 18 E/eV [MK, S.Ostapchenko 14 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 44 / 53

Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs: X = 30g/cm 2 E 2.6 I(E) [GeV 1.6 m -2 sr -1 s -1 ] 00 0 1 Hillas Polygonato Escape 0.1 model dependence impacts background in IceCube 0.01 11 12 13 14 15 16 17 18 E/eV Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 44 / 53

Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs gives negligible contribution to IceCube signal τ pp is too small even towards GC gas is concentrated as n(z) n 0 exp[ (z /z 12 ) 2 ] with z 12 0.2 kpc results apply also to other normal galaxies as starburst galaxies: Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 45 / 53

Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs gives negligible contribution to IceCube signal τ pp is too small even towards GC gas is concentrated as n(z) n 0 exp[ (z /z 12 ) 2 ] with z 12 0.2 kpc results apply also to other normal galaxies as starburst galaxies: magnetic fields factor 0 higher: Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 45 / 53

Astrophysical sources CR sea interactions in bulge and plane Neutrinos from Galactic Sea CRs gives negligible contribution to IceCube signal τ pp is too small even towards GC gas is concentrated as n(z) n 0 exp[ (z /z 12 ) 2 ] with z 12 0.2 kpc results apply also to other normal galaxies as starburst galaxies: magnetic fields factor 0 higher: if knee is caused by diffusion: Ecr B, neutrino knee at few 16 ev source: Emax B CR, neutrino knee at few 14 ev Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 45 / 53

Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 46 / 53

Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times average CR sea plus few recent sources Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 46 / 53

Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times average CR sea plus few recent sources close to the knee: CRs in PeV range spread fast few extreme sources Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 46 / 53

Astrophysical sources Galactic point sources Galactic sources at low energies: many sources, large confinement times average CR sea plus few recent sources close to the knee: CRs in PeV range spread fast few extreme sources inhomogenous CR sea, extended sources no clear distinction between point sources vs. Galactic bulge + plane cases Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 46 / 53

Astrophysical sources Galactic point sources Point source in gamma-ray source HESS J1825-137 [Neronov, Semikoz, Tchernin 13 ] 0.00600 90.000 60.000 0.00550 Cygnus region 0.00500 30.000 Crab 0.00450 0.00400 315.000 HESS J1825 270.000region 225.000 180.000 135.000 90.000 45.000 0.000 0.000 0.00350 0.00300 Galactic Center HESS J1632 region Kookaburra region Vela region -30.000 0.00250 0.00200-60.000 0.00150-90.000 0.000 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 47 / 53

Astrophysical sources Galactic point sources Gamma-ray point sources flux from HESS J1825-137, GC and GP Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 48 / 53

Astrophysical sources Galactic point sources (Isotropic) photon limits GRAPES-3 UMC HEGRA EAS-TOP IC-40 (γ) GAMMA KASCADE CASA-MIA 4 E 2 Jγ [GeV cm 2 s 1 sr 1 ] 5 6 7 8 9 8.5kpc 20kpc 30kpc 1 2 3 4 E γ [TeV] [Ahlers, Murase 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 49 / 53

PeV dark matter PeV dark matter re-incarnation of SHDM idea for AGASA excess: non-thermal DM avoids cascacde limit Galactic anisotropy some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 50 / 53

PeV dark matter PeV dark matter re-incarnation of SHDM idea for AGASA excess: non-thermal DM avoids cascacde limit Galactic anisotropy some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 50 / 53

PeV dark matter PeV dark matter re-incarnation of SHDM idea for AGASA excess: non-thermal DM avoids cascacde limit Galactic anisotropy some option to move initial flavor ration 1 : 2 : 0 towards 1 : 0 : 0 Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 50 / 53

PeV dark matter PeV dark matter E Ν 2 dj de Ν TeV cm 2 s 1 sr 1 11 DM Ν e Ν e 15, bb 85 DM Ν e Ν e 12, cc 88 DM e e 40, qq 60 1 2 3 E Ν TeV [Esmaili, Serpico 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 51 / 53

PeV dark matter PeV dark matter events bin 1 0.1 data E 2 spec. DM ΝΝ, qq 2 3 E Ν TeV [Esmaili, Serpico 13 ] Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 51 / 53

Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 52 / 53

Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 52 / 53

Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 52 / 53

Summary Summary Knee due to CR escape characteristic feature: recovery of p/he as suggested by KASCADE-Grande probes GMF: suggests small Brms and small l coh transition to light-medium extragalactic CRs completed at 3 17 ev propagation feature is unavoidable, only possible to shift to higher energies source effects may be on top, but seem not necessary Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 52 / 53

Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 53 / 53

Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 53 / 53

Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 53 / 53

Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 53 / 53

Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 53 / 53

Summary Summary IceCube neutrinos: 1 excess towards GC, consistent (?) with γ-ray data partly Galactic origin? 2 no enhancement towards Galactic plane: gas too narrow, flux too low 3 some tension with (Northern) γ-ray limits 4 extragalactic: dominant isotropic component diffuse, difficult to identify spectrum α = 2.45: cascade limit? favours pγ? 5 PeV dark matter: angular distibution follows DM profile Michael Kachelrieß (NTNU Trondheim) High-Energy Cosmic Rays and Neutrinos APC Paris, 9. Dec. 14 53 / 53