Distribution of Bipartite Entanglement of a Random Pure State

Similar documents
Large deviations of the top eigenvalue of random matrices and applications in statistical physics

MP 472 Quantum Information and Computation

Valerio Cappellini. References

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Ensembles and incomplete information

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

1 More on the Bloch Sphere (10 points)

Top eigenvalue of a random matrix: Large deviations

Entanglement Measures and Monotones Pt. 2

TOP EIGENVALUE OF CAUCHY RANDOM MATRICES

Concentration of Measure Effects in Quantum Information. Patrick Hayden (McGill University)

Quantum Chaos and Nonunitary Dynamics

Algebraic Theory of Entanglement

arxiv:quant-ph/ v1 7 Mar 2007

Eigenstate entanglement between quantum chaotic subsystems: universal transitions and power laws in the entanglement spectrum

The Principles of Quantum Mechanics: Pt. 1

arxiv: v4 [cond-mat.stat-mech] 28 May 2015

NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION

Statistical Inference and Random Matrices

Is the world more classical or more quantum?

arxiv: v2 [quant-ph] 18 Mar 2011

Introduction to Quantum Information Hermann Kampermann

Quantum Entanglement- Fundamental Aspects

2.1 Definition and general properties

Multipartite Monogamy of the Entanglement of Formation. Abstract

Entropy in Classical and Quantum Information Theory

Modification of the Porter-Thomas distribution by rank-one interaction. Eugene Bogomolny

FRACTAL DIMENSIONS FOR CERTAIN CRITICAL RANDOM MATRIX ENSEMBLES. Eugène Bogomolny

Multipartite entanglement in fermionic systems via a geometric

arxiv:quant-ph/ v1 22 Jul 2002

Entanglement in Topological Phases

The general reason for approach to thermal equilibrium of macroscopic quantu

Entanglement: concept, measures and open problems

Induced Ginibre Ensemble and random operations

arxiv:quant-ph/ v2 24 Dec 2003

Shared Purity of Multipartite Quantum States

Nullity of Measurement-induced Nonlocality. Yu Guo

Quantum Systems Measurement through Product Hamiltonians

Mutual Information in Conformal Field Theories in Higher Dimensions

Matrix Product States

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

Vicious Walkers, Random Matrices and 2-d Yang-Mills theory

Maximal height of non-intersecting Brownian motions

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Asymptotic Pure State Transformations

arxiv: v3 [quant-ph] 5 Jun 2015

Maximally entangled states and combinatorial designes

Mutual information-energy inequality for thermal states of a bipartite quantum system

Near extreme eigenvalues and the first gap of Hermitian random matrices

Measuring Entanglement Entropy in Valence Bond Quantum Monte Carlo Simulations

Quantum Entanglement and the Bell Matrix

arxiv: v2 [nlin.si] 15 Oct 2008

Random Matrix: From Wigner to Quantum Chaos

Some Bipartite States Do Not Arise from Channels

Physics 239/139 Spring 2018 Assignment 6

Concentration Inequalities for Random Matrices

Entanglement Measures and Monotones

Physics 581, Quantum Optics II Problem Set #4 Due: Tuesday November 1, 2016

Quantum Stochastic Maps and Frobenius Perron Theorem

arxiv: v2 [quant-ph] 14 Mar 2018

CS/Ph120 Homework 4 Solutions

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

arxiv: v1 [cond-mat.str-el] 7 Oct 2017

Compression and entanglement, entanglement transformations

Entanglement, quantum critical phenomena and efficient simulation of quantum dynamics

1 Tridiagonal matrices

Principles of Quantum Mechanics Pt. 2

arxiv: v2 [cond-mat.stat-mech] 20 May 2017

An Introduction to Quantum Computation and Quantum Information

Maximally Entangled State and Bell s Inequality in Qubits

arxiv: v2 [cond-mat.stat-mech] 12 Jun 2009

Quantification of Gaussian quantum steering. Gerardo Adesso

PHY305: Notes on Entanglement and the Density Matrix

Universality of local spectral statistics of random matrices

arxiv: v1 [cond-mat.stat-mech] 16 Oct 2012

arxiv: v2 [quant-ph] 13 Aug 2011

Entanglement Entropy in Extended Quantum Systems

arxiv: v1 [hep-th] 26 Sep 2017

arxiv: v2 [quant-ph] 10 Aug 2016

arxiv: v1 [quant-ph] 2 Nov 2018

Basic Notions of Entropy and Entanglement

BOGOLIUBOV TRANSFORMATIONS AND ENTANGLEMENT OF TWO FERMIONS

arxiv:quant-ph/ v1 9 Apr 1998

Entanglement in Many-Body Fermion Systems

arxiv: v2 [quant-ph] 7 Apr 2014

Applications to simulations: Monte-Carlo

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

arxiv:quant-ph/ v1 15 Dec 2004

Supplementary Information

A Holevo-type bound for a Hilbert Schmidt distance measure

AVERAGE ENTROPY OF A SUBSYSTEM

Universality of distribution functions in random matrix theory Arno Kuijlaars Katholieke Universiteit Leuven, Belgium

An Entropy depending only on the Probability (or the Density Matrix)

A Condition for Entropy Exchange Between Atom and Field

Progress in the method of Ghosts and Shadows for Beta Ensembles

Volume of the set of separable states

Classical Monte Carlo Simulations

Products of Rectangular Gaussian Matrices

Eigenvectors under a generic perturbation: non-perturbative results from the random matrix approach

Insights into Large Complex Systems via Random Matrix Theory

Transcription:

Distribution of Bipartite Entanglement of a Random Pure State Satya N. Majumdar Laboratoire de Physique Théorique et Modèles Statistiques,CNRS, Université Paris-Sud, France Collaborators: C. Nadal (Oxford University, UK) M. Vergassola (Institut Pasteur, Paris, France) Refs: Phys. Rev. Lett. 104, 110501 (2010) J. Stat. Phys. 142, 403 (2011) (long version)

Plan Plan: Bipartite entanglement of a random pure state

Plan Plan: Bipartite entanglement of a random pure state Reduced density matrix random matrix theory

Plan Plan: Bipartite entanglement of a random pure state Reduced density matrix random matrix theory Distribution of the Renyi entropy Results Coulomb gas technique for large systems Phase transitions

Plan Plan: Bipartite entanglement of a random pure state Reduced density matrix random matrix theory Distribution of the Renyi entropy Results Coulomb gas technique for large systems Phase transitions Summary and Conclusions

Coupled Bipartite System A B N dim. M dim. i A α B Coupled Bipartite System N M Bipartite quantum system A B: Hilbert space H A H B subsystem A: dimension N (the system to study) subsystem B: dimension M N ( environment )

Coupled Bipartite System A B N dim. M dim. i A α B Coupled Bipartite System N M Bipartite quantum system A B: Hilbert space H A H B subsystem A: dimension N (the system to study) subsystem B: dimension M N ( environment ) Large system: limit N 1 and M 1 with M N.

Pure State and Reduced Density Matrix A B N dim. M dim. i A α B Coupled Bipartite System N M

Pure State and Reduced Density Matrix A B N dim. M dim. i A α B Coupled Bipartite System N M Any pure state of the full system: ψ >= i,α x i,α i A > α B > X = [x i,α ] (N M) rectangular Coupling matrix

Pure State of Bipartite System ψ >= i,α x i,α i A > α B >

Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B >

Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised)

Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised)

Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised) Otherwise Entangled (non-factorisable)

Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised) Otherwise Entangled (non-factorisable) Density matrix of the composite system ˆρ = ψ >< ψ with Tr[ˆρ] = 1

Pure State of Bipartite System ψ >= i,α x i,α i A > α B > If x i,α = a i b α then ψ >= i a i i A > α b α α B >= Φ A > Φ B > Fully separable (factorised) Otherwise Entangled (non-factorisable) Density matrix of the composite system ˆρ = ψ >< ψ with Tr[ˆρ] = 1 Pure state: ˆρ k p k ψ k >< ψ k not a Mixed state

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A]

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] ˆρ A = Tr B [ˆρ]

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] M ˆρ A = Tr B [ˆρ] = < α B ˆρ α B > α=1

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] [ M N M ] ˆρ A = Tr B [ˆρ] = < α B ˆρ α B > = x i,α xj,α i A >< j A α=1 i,j=1 α=1

Reduced Density Matrix of subsystem A: A B N dim. M dim. i A α B Coupled Bipartite System N M Reduced Density Matrix: ˆρ A = Tr B [ˆρ] = Tr B [ ψ ψ ] with Tr[ˆρ A ] = 1 Measurement ÔA = Tr[Ô ˆρ A] [ M N M ] ˆρ A = Tr B [ˆρ] = < α B ˆρ α B > = x i,α xj,α i A >< j A α=1 = i,j=1 α=1 N W i,j i A >< j A i,j=1 where the N N matrix: W = XX

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 M Similarly ˆρ B = Tr A [ˆρ] = W α,β α B >< β B α,β=1

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 M Similarly ˆρ B = Tr A [ˆρ] = W α,β α B >< β B α,β=1 W = X X (M M) matrix with M eigenvalues (recall N M)

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 Similarly ˆρ B = Tr A [ˆρ] = M α,β=1 W α,β α B >< β B W = X X (M M) matrix with M eigenvalues (recall N M) {λ 1, λ 2,..., λ N, 0, 0,..., 0}

Eigenvalues of W: In the diagonal representation N N ˆρ A = W i,j i A >< j A λ i λ A i >< λ A i i,j=1 i=1 {λ 1, λ 2,..., λ N } non-negative eigenvalues of W = XX Tr[ˆρ A ] = 1 N λ i = 1 0 λ i 1 i=1 Similarly ˆρ B = Tr A [ˆρ] = M α,β=1 W α,β α B >< β B W = X X (M M) matrix with M eigenvalues (recall N M) {λ 1, λ 2,..., λ N, 0, 0,..., 0} Schmidt decomposition: ψ >= N λi λ A i > λ B i > i=1

Entanglement N Schmidt decomposition: ψ >= λi λ A i > λ B i > N Reduced density matrix: ˆρ A = Tr B [ ψ >< ψ ] = λ i λ A i >< λ A i i=1 i=1

Entanglement N Schmidt decomposition: ψ >= λi λ A i > λ B i > N Reduced density matrix: ˆρ A = Tr B [ ψ >< ψ ] = λ i λ A i >< λ A i i=1 {λ 1, λ 2,..., λ N } eigenvalues of W = XX with N 0 λ i 1 and λ i = 1 i=1 i=1

Entanglement Schmidt decomposition: ψ >= N λi λ A i > λ B i > i=1 Reduced density matrix: ˆρ A = Tr B [ ψ >< ψ ] = {λ 1, λ 2,..., λ N } eigenvalues of W = XX with N 0 λ i 1 and λ i = 1 (i) Unentangled λ i0 = 1, λ j = 0 j i 0 ψ = λ A i 0 λ B i 0 is separable ˆρ A = λ A i 0 λ A i 0 is pure i=1 N λ i λ A i >< λ A i i=1 (ii) Maximally entangled λ j = 1/N for all j (all eigenvalues equal) ψ is a superposition of all product states ˆρ A = 1 N N i=1 λa i λ A i = 1 N 1 A is completely mixed

Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i

Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i [ Renyi entropy: S q = 1 1 q ln N ] i=1 λq i and Σ q = N i=1 λq i

Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i [ Renyi entropy: S q = 1 1 q ln N ] i=1 λq i and Σ q = N i=1 λq i S q 1 = S VN and S q = ln(λ max ) Σ 2 = exp[ S q=2 ] Purity

Entanglement entropy Subsystem A described by ˆρ A = N i=1 λ i λ A i λ A i Von Neuman entropy: S VN = Tr [ˆρ A ln ˆρ A ] = N i=1 λ i ln λ i [ Renyi entropy: S q = 1 1 q ln N ] i=1 λq i and Σ q = N i=1 λq i S q 1 = S VN and S q = ln(λ max ) Σ 2 = exp[ S q=2 ] Purity (i) Unentangled λ i0 = 1, λ j = 0 j i 0 ˆρ A = λ A i 0 λ A i 0 is pure S VN = 0 = S q is minimal (ii) Maximally entangled λ j = 1/N for all j ˆρ A = 1 N N i=1 λa i λ A i mixed S VN = ln N = S q is maximal

A Simple Diagram for N=3 (0,0,1) λ 3 (1/3,1/3,1/3) MOST ENTANGLED S=log(N) (0,1,0) λ 2 λ 1 (1,0,0) LEAST ENTANGLED S=0

A Simple Diagram for N=3 (0,0,1) λ 3 (1/3,1/3,1/3) MOST ENTANGLED S=log(N) (0,1,0) λ 2 λ 1 (1,0,0) LEAST ENTANGLED S=0

Random Pure State: Haar Measure ψ >= x i,α i A > α B > = i,α N λi λ A i > λ B i > i=1

Random Pure State: Haar Measure ψ >= i,α x i,α i A > α B > = N λi λ A i > λ B i > random pure state where X = [x i,α ] are uniformly distributed among the sets of {x i,α } satisfying i,α x i,α 2 = Trρ = 1 i=1 Haar measure

Random Pure State: Haar Measure ψ >= i,α x i,α i A > α B > = N λi λ A i > λ B i > random pure state where X = [x i,α ] are uniformly distributed among the sets of {x i,α } satisfying i,α x i,α 2 = Trρ = 1 i=1 Haar measure Equivalently, for the N M matrix P(X ) δ ( Tr(XX ) 1 )

Random Pure State: Haar Measure ψ >= i,α x i,α i A > α B > = N λi λ A i > λ B i > random pure state where X = [x i,α ] are uniformly distributed among the sets of {x i,α } satisfying i,α x i,α 2 = Trρ = 1 i=1 Haar measure Equivalently, for the N M matrix P(X ) δ ( Tr(XX ) 1 ) In the basis i A of H A : ˆρ A = W = XX Distribution of the eigenvalues λ i of ˆρ A? Distribution of the entanglement entropies S VN, S q?

Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1

Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1 Joint distribution of Wishart eigenvalues (James 64): [ P({λ i }) exp β N λ i] λ β 2 (1+M N) 1 i λ j λ k β 2 i=1 i j<k

Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1 Joint distribution of Wishart eigenvalues (James 64): [ ( P({λ i }) exp β N λ i] λ β 2 (1+M N) 1 N ) i λ j λ k β δ λ i 1 2 i=1 i i=1 j<k (Llyod & Pagels 88, Zyczkowski & Sommers 2001)

Joint PDF of Eigenvalues the joint pdf P(λ 1, λ 2,..., λ N ) where {λ 1, λ 2,..., λ N } eigenvalues of the Wishart matrix W = XX (X N M Gaussian random matrix) with an additional constraint N λ i = 1 i=1 Joint distribution of Wishart eigenvalues (James 64): [ ( P({λ i }) exp β N λ i] λ β 2 (1+M N) 1 N ) i λ j λ k β δ λ i 1 2 i=1 i i=1 j<k (Llyod & Pagels 88, Zyczkowski & Sommers 2001) Given this pdf, what is the distribution of the Renyi entropy: [ S q = 1 1 q ln N ] i=1 λq i

Random Pure State: Well Studied Average von Neumann entropy: S VN ln N N 2M for M N 1 Near Maximal [Page ( 93), Foong and Kanno ( 94), Sánchez-Ruiz ( 95), Sen ( 96)]

Random Pure State: Well Studied Average von Neumann entropy: S VN ln N N 2M for M N 1 Near Maximal [Page ( 93), Foong and Kanno ( 94), Sánchez-Ruiz ( 95), Sen ( 96)] statistics of observables such as average density of eigenvalues, concurrence, purity, minimum eigenvalue λ min etc. [Lubkin ( 78), Zyczkowski & Sommers (2001, 2004), Cappellini, Sommers and Zyczkowski (2006), Giraud (2007), Znidaric (2007), S.M., Bohigas and Lakshminarayan (2008), Kubotini, Adachi and Toda (2008), Chen, Liu and Zhou (2010), Vivo (2010),...]

Random Pure State: Well Studied Average von Neumann entropy: S VN ln N N 2M for M N 1 Near Maximal [Page ( 93), Foong and Kanno ( 94), Sánchez-Ruiz ( 95), Sen ( 96)] statistics of observables such as average density of eigenvalues, concurrence, purity, minimum eigenvalue λ min etc. [Lubkin ( 78), Zyczkowski & Sommers (2001, 2004), Cappellini, Sommers and Zyczkowski (2006), Giraud (2007), Znidaric (2007), S.M., Bohigas and Lakshminarayan (2008), Kubotini, Adachi and Toda (2008), Chen, Liu and Zhou (2010), Vivo (2010),...] Laplace transform of the purity (q = 2) distribution for large N [Facchi et. al. (2008, 2010)]

Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1

Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1

Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1

Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1 (i) Unentangled S q = 0 is minimal Σ q = 1 (or s ) (ii) Maximally entangled S q = ln N is maximal Σ q = N 1 q (or s = 1)

Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1 (i) Unentangled S q = 0 is minimal Σ q = 1 (or s ) (ii) Maximally entangled S q = ln N is maximal Σ q = N 1 q (or s = 1) Average entropy for large N: Σ q N 1 q s(q) S q ln N ln s(q) q 1 where s(q) = Γ(q+1/2) πγ(q+2) 4 q

Results: Entropy Distribution Scaling for large N: λ typ 1 N as N i=1 λ i = 1 Renyi entropy: S q = 1 1 q ln [Σ q] with Σ q = N i=1 λq i, q > 1 Σ q = N 1 q s for large N S q = ln N ln s q 1 (i) Unentangled S q = 0 is minimal Σ q = 1 (or s ) (ii) Maximally entangled S q = ln N is maximal Σ q = N 1 q (or s = 1) Average entropy for large N: Σ q N 1 q s(q) S q ln N ln s(q) q 1 where s(q) = Γ(q+1/2) πγ(q+2) 4 q For q = 2, Σ 2 2 N (purity); For q 1, S VN ln N 1 2

Results: pdf of Σ q = i λq i P ( Σ q = N 1 q s ) exp { βn 2 Φ I (s) } exp { βn 2 Φ II (s) } { exp βn 1+ 1 q } ΨIII (s) for 1 s < s 1 (q) for s 1 (q) < s < s 2 (q) for s > s 2 (q) P ( Σ q = N 1 q s ) s(q) (a) ln [ P ( Σ q = N 1 q s )] (b) I II III I II III 1 s 1 (q) s 2 (q) max. entangled unentangled s 1s 1 (q) s(q) s 2 (q) s

Computation of the pdf of Σ q : Coulomb gas method PDF of Σ q = i λq i ( ) ( ) P(Σ q, N) = P(λ 1,..., λ N ) δ λ q i Σ q dλ i. i i

Computation of the pdf of Σ q : Coulomb gas method PDF of Σ q = i λq i ( ) ( ) P(Σ q, N) = P(λ 1,..., λ N ) δ λ q i Σ q dλ i. i i The joint pdf of the eigenvalues can be interpreted as a Boltzmann weight at inverse temperature β: P(λ 1,..., λ N ) δ ( λ i 1 ) i N i=1 exp { βe [{λ i }]} λ β 2 (M N+1) 1 i λ i λ j β i<j where E [{λ i }] = γ N i=1 ln λ i i<j ln λ i λ j (with i λ i = 1) effective energy of a 2D Coulomb gas of charges

Charge Density and Effective Energy E{λ i } = γ N ln λ i ln λ i λ j with λ i = 1 i<j i i=1

Charge Density and Effective Energy E{λ i } = γ N ln λ i ln λ i λ j with λ i = 1 i<j i i=1 Continuous charge density in the large N limit (regimes I, II): {λ i } ρ(x) = 1 δ (x λ i N) N i P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] }

Charge Density and Effective Energy E{λ i } = γ N ln λ i ln λ i λ j with i<j i i=1 λ i = 1 Continuous charge density in the large N limit (regimes I, II): {λ i } ρ(x) = 1 δ (x λ i N) N i P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } with effective energy E s [ρ] = 1 dx dx ρ(x)ρ(x ) ln x x 2 0 0 ( ) +µ 0 dx ρ(x) 1 0 ( ) ( +µ 1 dx x ρ(x) 1 + µ 2 where µ 0, µ 1 and µ 2 are Lagrange multipliers 0 0 ) dx x q ρ(x) s

Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ 0 2 0 0 ( ) ( +µ 1 dx x ρ(x) 1 + µ 2 0 0 ) dx ρ(x) 1 0 ) dx x q ρ(x) s

Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ 0 2 0 0 ( ) ( +µ 1 dx x ρ(x) 1 + µ 2 0 0 ) dx ρ(x) 1 0 ) dx x q ρ(x) s Saddle point method for large N: P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } exp { βn 2 E s [ρ c ] } where ρ c minimizes the energy: δe s δρ = 0 ρ=ρc

Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ 0 2 0 0 ( ) ( +µ 1 dx x ρ(x) 1 + µ 2 0 0 ) dx ρ(x) 1 0 ) dx x q ρ(x) s Saddle point method for large N: P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } exp { βn 2 E s [ρ c ] } where ρ c minimizes the energy: 0 δe s δρ = 0 giving ρ=ρc dx ρ c (x ) ln x x = µ 0 + µ 1 x + µ 2 x q V (x) V (x) effective potential for the charges.

Saddle Point Solution E s [ρ]= 1 ( dxdx ρ(x)ρ(x ) ln x x + µ 0 2 0 0 ( ) ( +µ 1 dx x ρ(x) 1 + µ 2 0 0 ) dx ρ(x) 1 0 ) dx x q ρ(x) s Saddle point method for large N: P ( Σ q = N 1 q s, N ) D [ρ] exp { βn 2 E s [ρ] } exp { βn 2 E s [ρ c ] } where ρ c minimizes the energy: 0 δe s δρ = 0 giving ρ=ρc dx ρ c (x ) ln x x = µ 0 + µ 1 x + µ 2 x q V (x) V (x) effective potential for the charges. Taking derivative with respect to x gives P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x)

Steps for Computing the PDF of Σ q (i) find the solution ρ c (x) of the integral equation P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x) Tricomi s solution: density ρ c (x) with finite support [L 1, L 2 ]: [ 1 L2 ] ρ c (x) = π dy y L1 L2 y C P V (y), x L 1 L2 x π x y where C = L 2 L 1 dx ρ c (x) is a constant L 1

Steps for Computing the PDF of Σ q (i) find the solution ρ c (x) of the integral equation P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x) Tricomi s solution: density ρ c (x) with finite support [L 1, L 2 ]: [ 1 L2 ] ρ c (x) = π dy y L1 L2 y C P V (y), x L 1 L2 x π x y where C = L 2 L 1 dx ρ c (x) is a constant (ii) for a given s, the unknown Lagrange multipliers µ 0, µ 1 and µ 2 are fixed by the three conditions: 0 ρ c (x) dx = 1, 0 L 1 x ρ c (x) dx = 1 and 0 x q ρ c (x) dx = s

Steps for Computing the PDF of Σ q (i) find the solution ρ c (x) of the integral equation P 0 dx ρ c(x ) x x = µ 1 + q µ 2 x q 1 = V (x) Tricomi s solution: density ρ c (x) with finite support [L 1, L 2 ]: [ 1 L2 ] ρ c (x) = π dy y L1 L2 y C P V (y), x L 1 L2 x π x y where C = L 2 L 1 dx ρ c (x) is a constant (ii) for a given s, the unknown Lagrange multipliers µ 0, µ 1 and µ 2 are fixed by the three conditions: 0 ρ c (x) dx = 1, 0 L 1 x ρ c (x) dx = 1 and (iii) evaluate the saddle point energy E s [ρ c ] 0 x q ρ c (x) dx = s

Phase Transitions Regime I: 1 < s < s 1 (s 1 (q = 2) = 5/4 ) Regime II: s 1 < s < s 2 (s 2 (q = 2) = 2 + 24/3 N 1/3 ) V (x) V (x) V (x) Regime III: s > s 2 (weakly entangled) I II III 0 x x 0 x 0 x (a) (b) (c) ρ c (λ, N) ρ c (λ, N) ρ c (λ, N) I II III L 1 /N L 2 /N λ λ λ 0 L/N 0 ζ t

q = 2 : Purity Regime I: 1 < s < 5/4 ρ c (x) = L2 x x L 1 2π (s 1) P (Σ 2 = s ) N, N e βn2 Φ I (s), Φ I (s) = 1 4 ln (s 1) 1 8,

q = 2 : Purity Regime I: 1 < s < 5/4 ρ c (x) = L2 x x L 1 2π (s 1) P (Σ 2 = s ) N, N e βn2 Φ I (s), Φ I (s) = 1 4 ln (s 1) 1 8 Regime II: 5/4 < s < 2 + 24/3 N 1/3 ρ c (x) = 1 L x ( (A + B x) with L = 2 3 ) 9 4s π x P (Σ 2 = s ) N, N e βn2 Φ II (s), Φ II (s) = 1 ( ) L 2 ln + 6 4 L 2 5 L + 7 8,

q = 2 : Purity Regime I: 1 < s < 5/4 ρ c (x) = L2 x x L 1 2π (s 1) P (Σ 2 = s ) N, N e βn2 Φ I (s), Φ I (s) = 1 4 ln (s 1) 1 8 Regime II: 5/4 < s < 2 + 24/3 N 1/3 ρ c (x) = 1 L x ( (A + B x) with L = 2 3 ) 9 4s π x P (Σ 2 = s ) N, N e βn2 Φ II (s), Φ II (s) = 1 ( ) L 2 ln + 6 4 L 2 5 L + 7 8, 3-rd order phase transition at s = 5/4 d 3 Φ I (s) ds 3 s=5/4 = 32 while d 3 Φ II (s) s=5/4 ds = 16 3

Regime III Regime III: s > 2 + 24/3 Continuous density with support [0, ζ] with N 1/3 ζ 4 N and separated λ max ζ: λ max = t s 2 N P (Σ 2 = s ) N, N e βn 3 2 Ψ III (s), Ψ III (s) = s 2 2

Numerical simulations Monte Carlo Simulations (non-standard Metropolis algorithm): pdf of Σ 2 (purity) for N = 1000 (second phase transition) ln P (Σ 2 = s N ) 0.008 βn 2 0.006 0.004 Φ III = Ψ III N 0.002 Φ II 0.000 2.0 2.1 2.2 2.3 2.4 2.5 s(2) s 2 (2) s

Numerical Simulations (2) Jump of the maximal eigenvalue (rightmost charge) at s = s 2 for q = 2 and different values of N N t = N λ max for Σ 2 = s N 20 15 N = 1000 N = 500 10 5 N = 50 0 2.0 2.1 2.2 2.3 2.4 2.5 s s 2 (N = 1000) s2 (N = 500) s

The limit q 1 von Neumann Entropy S VN = S q 1 = N i=1 λ i ln(λ i ) = ln(n) z

The limit q 1 von Neumann Entropy 0 z 01 01 01 01 S VN = S q 1 = N i=1 λ i ln(λ i ) = ln(n) z exp { βn 2 φ I (z) } for 0 z < z 1 = 2 3 ln ( 3 2) = 0.26. (S VN = ln(n) z) exp { βn 2 φ II (z) } for 0.26.. < z < z 2 = 1/2 { } exp β N2 ln(n) φ III (z) for z > z 2 = 1/2 P(S VN = ln(n) z) II III z=0 00 11 01 1 I maximally entangled z 1 =0.26.. 2 = 0.5 z

The limit q Maximal eigenvalue S q = ln (λ max )

The limit q Maximal eigenvalue S q = ln (λ max ) ( P λ max = t ) N exp { βn 2 χ I (t) } for 1 t < t 1 = 4 3 exp { βn 2 χ II (t) } for 4 3 < t < t 2 = 4 exp { βn χ III (t)} for t > t 2 = 4

The limit q Maximal eigenvalue S q = ln (λ max ) ( P λ max = t ) N exp { βn 2 χ I (t) } for 1 t < t 1 = 4 3 exp { βn 2 χ II (t) } for 4 3 < t < t 2 = 4 exp { βn χ III (t)} for t > t 2 = 4 Around its mean, λ max = 4/N, the typical fluctuations ( O(N 5/3 )) are described by the Tracy-Widom distribution λ max = 4 N + 24/3 N 5/3 Y β Y β random variable distributed via Tracy-Widom law

The limit q Maximal eigenvalue S q = ln (λ max ) ( P λ max = t ) N exp { βn 2 χ I (t) } for 1 t < t 1 = 4 3 exp { βn 2 χ II (t) } for 4 3 < t < t 2 = 4 exp { βn χ III (t)} for t > t 2 = 4 Around its mean, λ max = 4/N, the typical fluctuations ( O(N 5/3 )) are described by the Tracy-Widom distribution λ max = 4 N + 24/3 N 5/3 Y β Y β random variable distributed via Tracy-Widom law For finite N and M, see P. Vivo (2011)

Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1)

Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution

Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas

Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas at the second critical point: λ max suddenly jumps to a value N (1 1/q) much larger than the other λ i 1/N

Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas at the second critical point: λ max suddenly jumps to a value N (1 1/q) much larger than the other λ i 1/N While the average entropy of a random pure state is indeed close to its maximal value ln N, the probability of occurrence of the maximally entangled state (all λ i = 1/N) is actually very small.

Summary and Conclusions Exact distribution of the Renyi entanglement entropy S q for a random pure state in a large bipartite quantum system (M N 1) Coulomb gas method saddle point solution 2 critical points direct consequence of 2 phase transitions in the associated Coulomb gas at the second critical point: λ max suddenly jumps to a value N (1 1/q) much larger than the other λ i 1/N While the average entropy of a random pure state is indeed close to its maximal value ln N, the probability of occurrence of the maximally entangled state (all λ i = 1/N) is actually very small. Work in progress (C. Nadal, S.M with C. Pineda and T. Seligman) Distribution of entropy for N finite but M N (large environment)?

References On the large N distribution of the Renyi entropy: C. Nadal, S.M. and M. Vergassola, Phys. Rev. Lett. 104, 110501 (2010) long version: J. Stat. Phys. 142, 403 (2011) On the distribution of the minimum Schmidt number λ min : S.M., O. Bohigas and A. Lakshminarayan, J. Stat. Phys. 131, 33 (2008) see also S.M. in Handbook of Random Matrix Theory (ed. by G. Akemann, J. Baik and P. Di Francesco and forwarded by F.J. Dyson) (Oxford Univ. Press, 2011) (arxiv:1005.4515)