Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b.

Similar documents
Enzymes I. Dr. Mamoun Ahram Summer semester,

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall 2004 KEY FEATURES OF ENZYMES

What is an enzyme? Lecture 12: Enzymes & Kinetics I Introduction to Enzymes and Kinetics. Margaret A. Daugherty Fall General Properties

Catalysis. Instructor: Dr. Tsung-Lin Li Genomics Research Center Academia Sinica

Unit 3. Enzymes. Catalysis and enzyme kinetics.

Chapter 8 Metabolism: Energy, Enzymes, and Regulation

Basic Concepts of Enzyme Action. Enzymes. Rate Enhancement 9/17/2015. Stryer Short Course Chapter 6

A. Reaction Mechanisms and Catalysis (1) proximity effect (2) acid-base catalysts (3) electrostatic (4) functional groups (5) structural flexibility

Chapter 6: Outline-2. Chapter 6: Outline Properties of Enzymes. Introduction. Activation Energy, E act. Activation Energy-2

ENZYMES. by: Dr. Hadi Mozafari

C a h p a t p e t r e r 6 E z n y z m y e m s

Chapter 6 Overview. Enzymes. Catalysis most important function of proteins. Globular protein Increase rate of metabolic processes

Chapter 8: Energy and Metabolism

Enzymes Enzyme Mechanism

Enzymes Enzyme Mechanism

Introduction and. Properties of Enzymes

Biochemistry 3300 Problems (and Solutions) Metabolism I

Enzymes and Protein Structure

Part II => PROTEINS and ENZYMES. 2.5 Enzyme Properties 2.5a Enzyme Nomenclature 2.5b Transition State Theory

Chemistry 5.07SC Biological Chemistry I Fall Semester, 2013

MITOCW watch?v=gboyppj9ok4

Pyruvate is reduced to lactate in anaerobic metabolism in muscle cells

4 Examples of enzymes

Biochemistry 462a - Enzyme Kinetics Reading - Chapter 8 Practice problems - Chapter 8: (not yet assigned); Enzymes extra problems

Lecture 15: Enzymes & Kinetics. Mechanisms ROLE OF THE TRANSITION STATE. H-O-H + Cl - H-O δ- H Cl δ- HO - + H-Cl. Margaret A. Daugherty.

Enzymes and kinetics. Eva Samcová and Petr Tůma

2054, Chap. 8, page 1

C a h p a t p e t r e r 6 E z n y z m y e m s

Enzymes. Dr.Anupam Porwal Assistant Professor Dept. Of Biotechnology

PETER PAZMANY CATHOLIC UNIVERSITY Consortium members SEMMELWEIS UNIVERSITY, DIALOG CAMPUS PUBLISHER

BIOCHEMISTRY. František Vácha. JKU, Linz.

Exam 4 April 15, 2005 CHEM 3511 Print Name: KEY Signature

Chemistry 1506: Allied Health Chemistry 2. Section 10: Enzymes. Biochemical Catalysts. Outline

Key Concepts.

C. Incorrect! Catalysts themselves are not altered or consumed during the reaction.

Enzyme Catalysis & Biotechnology

Two requirements for life: Self-replication and appropriate catalysis. A. Most enzymes (def.: biological catalysts) are proteins

2013 W. H. Freeman and Company. 6 Enzymes

Chapter 8. Enzymes: basic concept and kinetics

Chapter 6- An Introduction to Metabolism*

Ch 4: Cellular Metabolism, Part 1

I. Enzymes as Catalysts Chapter 4

Introduction to Enzymes

Acid/Base catalysis Covalent catalysis Metal ion catalysis Electrostatic catalysis Proximity and orientation Preferential binding of the transition

Biological Chemistry and Metabolic Pathways

Lecture 7: Enzymes and Energetics

Chapter 15: Enyzmatic Catalysis

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

Overview of Kinetics

Proteins Act As Catalysts

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

BCMB 3100 Chapters 6,7,8 Enzyme Basics. Six Classes (IUBMB) Kinetics Michaelis-Menten Equation Vo, Km, Vmax, Kcat Lineweaver-Burk Plot

Energy Transformation and Metabolism (Outline)

Chapters 5-6 Enzymes. Catalyst: A substance that speeds up the rate of a chemical reaction but is not itself consumed.

CHAPTER 15 Metabolism: Basic Concepts and Design

Bio-elements. Living organisms requires only 27 of the 90 common chemical elements found in the crust of the earth, to be as its essential components.

BIOLOGICAL SCIENCE. Lecture Presentation by Cindy S. Malone, PhD, California State University Northridge. FIFTH EDITION Freeman Quillin Allison

Objectives INTRODUCTION TO METABOLISM. Metabolism. Catabolic Pathways. Anabolic Pathways 3/6/2011. How to Read a Chemical Equation

Energy, Enzymes, and Metabolism. Energy, Enzymes, and Metabolism. A. Energy and Energy Conversions. A. Energy and Energy Conversions

Chapter 6: Energy and Metabolism

9/25/2011. Outline. Overview: The Energy of Life. I. Forms of Energy II. Laws of Thermodynamics III. Energy and metabolism IV. ATP V.

Oxidative Phosphorylation versus. Photophosphorylation

2015 AP Biology Unit 2 PRETEST- Introduction to the Cell and Biochemistry

General Biology. The Energy of Life The living cell is a miniature factory where thousands of reactions occur; it converts energy in many ways

Catalysis is Necessary for Life. Chapter 6 Enzymes. Why Study Enzymes? Enzymes are Biological Catalysts

It s the amino acids!

Biochemistry Enzyme kinetics

Chapter 6. Ground Rules Of Metabolism

Metabolism and enzymes

2017 Ebneshahidi. Dr. Ali Ebneshahidi

Enzyme Enzymes are proteins that act as biological catalysts. Enzymes accelerate, or catalyze, chemical reactions. The molecules at the beginning of

Lecture Series 9 Cellular Pathways That Harvest Chemical Energy

Enzymes are macromolecules (proteins) that act as a catalyst

Lecture 14 (10/18/17) Lecture 14 (10/18/17)

Enzyme function: the transition state. Enzymes & Kinetics V: Mechanisms. Catalytic Reactions. Margaret A. Daugherty A B. Lecture 16: Fall 2003

Catalytic Reactions. Intermediate State in Catalysis. Lecture 16: Catalyzed reaction. Uncatalyzed reaction. Enzymes & Kinetics V: Mechanisms

Enzymes and Enzyme Kinetics I. Dr.Nabil Bashir

2. In regards to the fluid mosaic model, which of the following is TRUE?

An Introduction to Metabolism

An Introduction to Metabolism

2. The study of is the study of behavior (capture, storage, usage) of energy in living systems.

Henderson - Hasselbalch equation

I. Flow of Energy in Living Things II. Laws of Thermodynamics & Free Energy III. Activation Energy IV. Enzymes V. Reaction Coupling VI.

BIOLOGY 10/11/2014. An Introduction to Metabolism. Outline. Overview: The Energy of Life

ATP ATP. The energy needs of life. Living economy. Where do we get the energy from? 9/11/2015. Making energy! Organisms are endergonic systems

Basic Concepts of Metabolism. Stages of Catabolism. Key intermediates 10/12/2015. Chapter 15, Stryer Short Course

ENZYMES 1: OVERVIEW AND MECHANISM OF ACTION

Introduction to Metabolism (Or Energy Management) Chapter 8

[Urea] (M) k (s -1 )

Department of Chemistry and Biochemistry University of Lethbridge. Biochemistry II. Bioenergetics

CHAPTER 1: ENZYME KINETICS AND APPLICATIONS

Chapter 8: An Introduction to Metabolism. 1. Energy & Chemical Reactions 2. ATP 3. Enzymes & Metabolic Pathways

BIOCHEMISTRY/MOLECULAR BIOLOGY

f) Adding an enzyme does not change the Gibbs free energy. It only increases the rate of the reaction by lowering the activation energy.

Chapter 5 Ground Rules of Metabolism Sections 1-5

An Introduction to Metabolism

2. Which of the following are nucleophiles and which are electrophiles?

An Introduction to Metabolism

An Introduction to Metabolism

number Done by Corrected by Doctor Nafeth Abu Tarboush

Transcription:

Enzyme definition Enzymes are protein catalysts that increase the velocity of a chemical reaction and are not consumed during the reaction they catalyze. [Note: Some types of RNA can act like enzymes, usually catalyzing the cleavage and synthesis of phosphodiester bonds; RNAs with catalytic activity are called ribozymes and are much less commonly encountered than protein catalysts.]

Biologic catalysts 1. Shared properties with chemical catalysts a. Enzymes are neither consumed nor produced during the course of a reaction. b. Enzymes do not cause reactions to take place, but they greatly enhance the rate of reactions that would proceed much slower in their absence. They alter the rate but not the equilibrium constants of reactions that they catalyze. 2. Differences between enzymes and chemical catalysts a. Enzymes are proteins. b. Enzymes are highly specific and produce only the expected products from the given reactants, or substrates (i.e., there are no side reactions). c. Enzymes may show a high specificity toward one substrate or exhibit a broad specificity, using more than one substrate. d. Enzymes usually function within a moderate ph and temperature range.

Enzymes execute of two basic functions in biological object. They are catalytic and regulation. Catalytic efficiency Most enzyme-catalyzed reactions are highly efficient, proceeding from 10 3 to 10 8 times faster than uncatalyzed reactions. Typically, each enzyme molecule is capable of transforming 100 to 1000 substrate molecules into product each second. The number of molecules of substrate converted to product per enzyme molecule per second is called the turnover number. Regulation Enzyme activity can be regulated that is, enzymes can be activated or inhibited so that the rate of product formation responds to the needs of the cell.

Measures of enzyme activity 1. Specific activity is usually expressed as µmol of substrate transformed to product per minute per milligram of enzyme under optimal conditions of measurement. 2. Turnover number, or k cal, is the number of substrate molecules metabolized per enzyme molecule per unit time with units of min -1 or s -1.

Enzyme classification 1. Enzymes are divided into six major classes with several subclasses. a. Oxidoreductases are involved in oxidation and reduction. b. Transferases transfer functional groups (e.g., amino or phosphate groups). c. Hydrolases transfer water; that is, they catalyze the hydrolysis of a substrate. d. Lyases add (or remove) the elements of water, ammonia, or carbon dioxide (CO 2 ) to (or from) double bonds. e. Isomerases catalyze rearrangements of atoms within a molecule. f. Ligases join two molecules.

Six Major Classes of Enzymes and Examples of Their Subclasses Classification Distinguishing Feature 1. Oxidoreductases А red +В ox А оx + В red Oxidases Dehydrogenases Oxygenases Peroxidases Use oxygen as an electron acceptor but do not incorporate it into the substrate Use molecules other than oxygen (e.g., NAD + ) as an electron acceptor Directly incorporate oxygen into the substrate Use H 2 O 2 as an electron acceptor 2. Transferases А-В+С А+В-С Methyltransferases Transfer one-carbon units between substrates Aminotransferases Transfer NH 2 from amino acids to keto acids Kinases Transfer PO 3 ~ from ATP to a substrate Phosphorylases Transfer PO 3 ~ from inorganic phosphate (P,) to a substrate 3. Hydrolases А-В+Н 2 О А-Н + В-ОН Phosphatases Remove PO 3 ~ from a substrate Phosphodiesterases Cleave phosphodiester bonds such as those in nucleic acids Proteases Cleave amide bonds such as those in proteins 4. Lyases А(ХН)-В А-Х+В-Н Decarboxylases Aldolases Synthases 5. Isomerases А Изо-А Racemases Mutases Produce CO 2 via elimination reactions Produce aldehydes via elimination reactions Link two molecules without involvement of ATP Interconvert L and D stereoisomers Transfer groups between atoms within a molecule 6. Ligases A+B+ATP A-B+ADP+Pi Carboxylases Synthetases Use CO 2 as a substrate Link two molecules via an ATP-dependent reaction

NOMENCLATURE_OF ENZYMES Each enzyme is assigned two names. The first is its short, recommended name, convenient for everyday use. The second is the more complete systematic name, which is used when the enzyme must be identified without ambiguity. A. Recommended name Most commonly used enzyme names have the suffix "- ase" attached to the substrate of the reaction, for example, glucosidase, urease, sucrase; or to a description of the action performed, for example, lactate dehydrogenase and adenylate cyclase. [Note: Some enzymes retain their original trivial names, which give no hint of the associated enzymic reaction, for example, trypsin and pepsin.] B. Systematic name The International Union of Biochemistry and Molecular Biology (IUBMB) developed a system of nomenclature in which enzymes are divided into six major classes, each with numerous subgroups. The suffix "-ase" is attached to a fairly complete description of the chemical reaction catalyzed, for example D-glyceraldehyde 3- phosphate:nad oxidoreductase. The IUBMB names are unambiguous and informative, but are sometimes too cumbersome to be of general use.

A skeletal outline of the IUB system is presented below. (1) Reactions and the enzymes that catalyze them form six classes, each having 4-13 subclasses. (2) The enzyme name has two parts. The first names the substrate or substrates. The second, ending in -ase, indicates the type of reaction catalyzed. (3) Additional information, if needed to clarify the reaction, may follow in parentheses; eg, the enzyme catalyzing L-malate + NAD + = pyruvate + CO 2 + NADH + H + is designated 1.1.1.37 L-malate:NAD + oxidoreductase (decarboxylating). (4) Each enzyme has a code number (EC) that characterizes the reaction type as to class (first digit), subclass (second digit), and subsubclass (third digit). The fourth digit is for the specific enzyme. Thus, EC 2.7.1.1 denotes class 2 (a transferase), subclass 7 (transfer of phosphate), subsubclass 1 (an alcohol is the phosphate acceptor). The final digit denotes hexokinase, or ATP:D-hexose 6-phosphotransferase, an enzyme catalyzing phosphate transfer from ATP to the hydroxyl group on carbon 6 of glucose.

Enzyme structure Active sites Enzyme molecules contain a special pocket or cleft called the active site. The active site contains amino acid side chains that create a three-dimensional surface complementary to the substrate. The active site binds the substrate, forming an enzyme-substrate (ES) complex. ES is converted to enzyme-product (EP), which subsequently dissociates to enzyme and product Cofactors Some enzymes associate with a nonprotein cofactor that is needed for enzymic activity. Commonly encountered cofactors include metal ions (for example, Zn 2+, Fe 2+ ) and organic molecules, known as coenzymes, that are often derivatives of vitamins (for example, NAD +, FAD, coenzyme A. Holoenzyme refers to the enzyme with its cofactor. Apoenzyme refers to the protein portion of the holoenzyme. In the absence of the appropriate cofactor, the apoenzyme typically does not show biologic activity. A prosthetic group is a tightly bound coenzyme that does not dissociate from the enzyme. Most of enzymes can contain additional active site for interaction with regulated molecule. It is called allosteric site. Allosteric binding sites Allosteric enzymes are regulated by molecules called effectors (also modifiers or modulators) that bind noncovalently at a site other than the active site. The presence of an allosteric effector can alter the affinity of the enzyme for its substrate or modify the maximal catalytic activity of the enzyme or both. Effectors that inhibit enzyme activity are termed negative effectors, whereas those that increase enzyme activity are called positive effector.

MECHANISM OF ENZYME CATALYSIS A. Chemical reactions 1. Free-energy changes that occur during a chemical reaction when the reaction is catalyzed (lower curve) and uncatalyzed (upper curve) are illustrated in Fig. 2. Energy of activation is required to sufficiently energize a substrate molecule to reach a transition state in which there is a high probability that a chemical bond will be made or broken to form the product. Enzymes increase the rate of reaction by decreasing the energy of activation.

Specificity The specificity of an enzyme is determined by the functional groups of the substrate, the functional groups of the enzyme, and the physical proximity of these functional groups. Two theories have been proposed to explain the specificity of enzyme action. Lock and key theory. The enzyme active site is complementary in conformation to the substrate, so that enzyme and substrate recognize one another. Induced-fit theory. The enzyme changes shape on binding substrate, so that the conformation of substrate and enzyme is only complementary after binding.

CATALYTIC MECHANISM OF CHYMOTRYPSIN Chymotrypsin hydrolyzes specific peptide bonds of denatured proteins. Proteolysis in the absence of chymotrypsin. The scissile bond is shown in blue. A. The carbonyl carbon, which carries a partial positive charge, is attacked by a hydroxyl group from water. B. An unstable tetrahedral oxyanion intermediate is formed, which is the transition state complex. C. As the electrons return to the carbonyl carbon, the remaining proton from water adds to the leaving group to form an amine. catalytic mechanism of chymotrypsin (step by step) 1. Substrate binding 2. Histidine activates serine for nucleophilic attack 3. The oxyanion tetrahedral intermediate is stabilized by hydrogen bonds 4. Cleavage of the peptide bond 5. The covalent acyl -enzyme intermediate 6. Water attacks the carbonyl carbon 7. Second oxyanion tetrahedral intermediate 8. Acid catalysis breaks the acyl-enzyme covalent bond 9. The product is free to dissociate

Some General Strategies of Enzymatic Catalysis Proximity and orientation Transition state stabilization Acid-base catalysis Nucleophilic catalysis Electrophilic catalysis Covalent catalysis

Coenzymes Can Be Classified According to the Group Whose Transfer They Facilitate BASED ON THE ABOVE CONCEPT, WE MIGHT CLASSIFY COENZYMES AS FOLLOWS: 1.For transfer of groups other than hydrogen- Sugar phosphates CoA-SH Thiamin pyrophosphate Pyridoxal phosphate Folate coenzymes Biotin Cobamide (B 12 ) coenzymes Lipoic acid 2.For transfer of hydrogen- NAD+ NADP+ FMN, FAD Lipoic acid Coenzyme Q

COENZYMES The functional group of thiamine pyrophosphate (shown in blue) participates in formation of a covalent intermediate. A. base on the enzyme (B:) abstracts a proton from thiamine, creating a carbanion (general acid-base catalysis). B. The carbanion is a strong nucle-ophile, and attacks the positively charged keto group on the substrate. C. A covalent intermediate is formed, which is stabilized by resonance forms. The uncharged intermediate is the stabilized transition state complex.

CoA and biotin are activation transfer coenzymes. A. Coenzyme A (CoA or CoASH) and phosphopantetheine are synthesized from the vitamin pantothenate (pantothenic acid). The active sulfhydryl group, shown in blue, is where acyl (e.g., acetyl, succmyl, or fatty acyl) groups bind to form thioesters. B. Biotin activates and transfers CO 2 to compounds in carboxylation reactions. The reactive N is shown in blue. The covalent attachment to a lysine residue of a carboxylase enzyme gives it a long flexible arm.

Reactive sites of pyridoxal phosphate. Pyridoxal phosphate contains a reactive aldehyde which forms a covalent intermediate with amino groups of amino acids (a Schiff base). The positively charged pyridine ring is a strong electron-withdrawing group which pulls electrons into it from the bonds around the amino acid α- carbon (electrophilic catalysis). NAD + accepts a hydride ion, shown in blue. NAD + -dependent dehydrogenases catalyze the transfer of a hydride ion (H:-) from a carbon to NAD+ in oxidation reactions such as the oxidation of alcohols to ketones or aldehydes to acids. The positively charged pyridine ring nitrogen of NAD + increases the electrophilicity of the carbon opposite it in the ring. This carbon then accepts the negatively charged hydride ion. The alcoholic proton is released into water. NADP functions by the same mechanism, but is usually involved in pathways of reductive synthesis.