Title. Authors and Affiliations. Abstract. Introduction. Twisted Radio Waves and Twisted Thermodynamics

Similar documents
Supplementary Information. Holographic Detection of the Orbital Angular Momentum of Light with Plasmonic Photodiodes

Generation and propagation characteristics of electromagnetic vortices in radio frequency

Chapter 39. Particles Behaving as Waves

Local topological charge analysis of electromagnetic vortex beam based on empirical mode decomposition

where n = (an integer) =

Chapter 1. From Classical to Quantum Mechanics

An electron can be liberated from a surface due to particle collisions an electron and a photon.

Application of orbital angular momentum to simultaneous determination of tilt and lateral displacement of a misaligned laser beam

Chapter 1 The Bohr Atom

Einstein s Approach to Planck s Law

Electronic Structure of Atoms. Chapter 6

Electromagnetic Radiation. Physical Principles of Remote Sensing

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

ATOMIC PHYSICS. history/cosmology/tools/ tools-spectroscopy.htm CHAPTER 9 - FROM SPECTROSCOPY TO ATOMS

Orbital Angular Momentum (OAM) based Mode Division Multiplexing (MDM) over a km-length Fiber

PHYS 3313 Section 001 Lecture #14

is the minimum stopping potential for which the current between the plates reduces to zero.

Chapter 37 Early Quantum Theory and Models of the Atom

High efficiency SHG of orbital angular momentum light in an external cavity

Dept. of Physics, MIT Manipal 1

Chapter 8. Structure of Atom

Sources of radiation

Chem 467 Supplement to Lecture 19 Hydrogen Atom, Atomic Orbitals

Ch 7 Quantum Theory of the Atom (light and atomic structure)

Physics 1C Lecture 29B

Quantum Theory of the Atom

Modern Physics for Scientists and Engineers International Edition, 4th Edition

1. Historical perspective

Chp 6: Atomic Structure

ANALYSIS OF THE ATTENUATOR-ARTIFACT IN THE EXPERIMENTAL ATTACK OF GUNN-ALLISON-ABBOTT AGAINST THE KLJN SYSTEM

Problems with the atomic model?

Physics 208 Exam 3 Nov. 28, 2006

Early Quantum Theory and Models of the Atom

Properties of Light and Atomic Structure. Chapter 7. So Where are the Electrons? Electronic Structure of Atoms. The Wave Nature of Light!

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

UNIT : QUANTUM THEORY AND THE ATOM

PHYS 172: Modern Mechanics Fall 2009

2) The energy of a photon of light is proportional to its frequency and proportional to its wavelength.

THE UNIVERSITY OF QUEENSLAND DEPARTMENT OF PHYSICS PHYS2041 ATOMIC SPECTROSCOPY

THE NATURE OF THE ATOM. alpha particle source

Atomic Structure. Standing Waves x10 8 m/s. (or Hz or 1/s) λ Node

APPLIED OPTICS POLARIZATION

Chemistry Instrumental Analysis Lecture 2. Chem 4631

SUPPLEMENTARY INFORMATION

Quantum Mechanics. Particle in a box All were partial answers, leading Schrödinger to wave mechanics

Planck s Hypothesis of Blackbody

Class XII - Physics Atoms Chapter-wise Problems

Wavelength of 1 ev electron

Copyright 1966, by the author(s). All rights reserved.

Minimum Bias Events at ATLAS

Electrons in Atoms. Before You Read. Chapter 4. Review the structure of the atom by completing the following table.

Orbital Angular Momentum Generation by a Point Defect in Photonic Crystals

CHEM6416 Theory of Molecular Spectroscopy 2013Jan Spectroscopy frequency dependence of the interaction of light with matter

Chemistry 4531 Spring 2009 QUANTUM MECHANICS 1890's I. CLASSICAL MECHANICS General Equations LaGrange Hamilton

Quantum information processing. Two become one

THE EDUCARE (SIROHI CLASSES) TEST SERIES 2018

Thermal noise driven computing

Planck s Hypothesis of Blackbody

Chapter 6. Quantum Theory and the Electronic Structure of Atoms Part 1

Atomic Structure 11/21/2011

Submitted for publication on October 23, Version 3, October 24,

FIBER OPTICS. Prof. R.K. Shevgaonkar. Department of Electrical Engineering. Indian Institute of Technology, Bombay. Lecture: 15. Optical Sources-LASER

Class 11: Thermal radiation

Class XII Physics (Theory)

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.5: Optical Absorption. Ron Reifenberger Professor of Physics Purdue University

Controlling Graphene Ultrafast Hot Carrier Response from Metal-like. to Semiconductor-like by Electrostatic Gating

Stellar Astrophysics: The Interaction of Light and Matter

Optical Systems Program of Studies Version 1.0 April 2012

8 Wavefunctions - Schrödinger s Equation

ATOMIC STRUCRURE

General Physics (PHY 2140)

Higher -o-o-o- Past Paper questions o-o-o- 3.4 Spectra

From Last Time. Electron diffraction. Making a particle out of waves. Planetary model of atom. Using quantum mechanics ev 1/ 2 nm E kinetic

The Photoelectric Effect

LECTURE # 17 Modern Optics Matter Waves

Sharif University of Technology Physics Department. Modern Physics Spring 2016 Prof. Akhavan

Chapter 1 Early Quantum Phenomena

Exam 2. Name: Class: Date:

Rapid Review of Early Quantum Mechanics

International Physics Course Entrance Examination Questions

Relativistic corrections of energy terms

IB Physics SL Y2 Option B (Quantum and Nuclear Physics) Exam Study Guide Practice Problem Solutions

WEEK 2: 4 SEP THRU 10 SEP; LECTURES 4-6

Models of the Atom. Spencer Clelland & Katelyn Mason

General Chemistry by Ebbing and Gammon, 8th Edition

Class XII Chapter 8 Electromagnetic Waves Physics

CHAPTER 3 The Experimental Basis of Quantum Theory

Satellite Remote Sensing SIO 135/SIO 236. Electromagnetic Radiation and Polarization

Lecture 1 : p q dq = n q h (1)

10/27/2017 [pgs ]

Saturation Absorption Spectroscopy of Rubidium Atom

Bo Thidé Swedish Institute of Space Physics, IRF, Uppsala, Sweden LOIS Space Centre, Växjö, Sweden

Optimizing the performance of metal-semiconductor-metal photodetectors by embedding nanoparticles in the absorption layer

Does a standalone, cold (low-thermal-noise), linear resistor exist without cooling?

AP Physics B Syllabus

Light Waves and Polarization

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Lecture 0. NC State University

Planck s Quantum Hypothesis Blackbody Radiation

3. Anaemia can be diagnosed by (a) 15 P 31 (b) 15 P 32 (c) 26 Fe 59 (d) 11 Na 24. (b) α particle (Alpha particle)

Transcription:

Title Twisted Radio Waves and Twisted Thermodynamics Authors and Affiliations L.B. Kish corresponding author Solid State Electronics, Photonics, and Nanoengineering Division, Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843-3128, USA Robert D. Nevels Electro-Magnetics and Microwaves Division, Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, 77843-3128, USA Abstract We present and analyze a gedanken experiment and show that the assumption that an antenna operating at a single frequency can transmit more than two independent information channels to the far field violates the Second Law of Thermodynamics. Transmission of a large number of channels, each associated with an angular momenta twisted wave mode, to the far field in free space is therefore not possible. Introduction Recently it has been claimed in scientific literature that it is possible to generate radio waves, at a single frequency, with more spatially orthogonal modes, "orbital modes", than the usual two polarization modes [1-4]. An experimental demonstration with N = 2 modes purporting to confirm the twisted wave concept has been carried out and published [2]. Such radio waves would have angular momenta, also referred to as orbital angular momenta, in a way similar to the orthogonal (l) wave modes of electrons that exist at the same frequency and belong to the same main quantum number (n). Communication utilizing such independent/orthogonal modes would expand the available frequency band by a factor given by the number of additional spatially orthogonal modes. Because the information channel capacity of radio waves scales linearly with the number of spatially orthogonal modes N, in the case of fixed bandwidth and signal-to-noise ratio if N can be more than two or even infinite as claimed [1], wireless communication would be revolutionized. It is important to note that recently two independent groups published papers [5,6] concluding that the proposed twisted wave schemes are a special case of the traditional multiple-input-multiple-output (MIMO) technique and are thus not conceptually new. 1

Furthermore [5] points out that in the far field the twisted wave scheme does not provide any increase in information channel capacity. Paper [6] shows that the experiments [2] have not been performed in "far-enough-field" conditions. A true far field wireless experiment would show further losses and other deficiencies in individual twisted wave modes [5]. Discussion and Results In this paper we address a fundamental physics question: Can modes with non-zero angular momenta representing extra, beyond N = 2, independent communication channels be radiated to the far field and selectively picked up by a proper antenna, which is insensitive to standard plane wave modes? If the polarization is circular a common situation in wireless technology one has N = 2 with plane waves in the two polarization modes phase-shifted by 90 o. Thus it is clear that up to N = 2 orthogonal plane wave polarization modes can exist in the far field and the circularly polarized mode carries angular momentum. Yet to date whether a greater number of angular momentum modes can exist at the same frequency and carrying independent signals in the far field has not been shown to violate fundamental physical principles. It should first be noted that based on physical principles the assumption that there can be more than the two far-field polarization modes is counter-intuitive. In the atom, the existence of waves with different angular momenta at the same energy originates from the potential and the ensuing localized nature of the waves. A charge revolving in a Coulomb potential field will have an infinite number of different classical physical paths with the same energy, and Bohr-Sommerfeld quantization will select a finite number of states that are allowed within quantum theory. But, in stark contrast no such state components exist for free electron waves. In light of this intuitive argument, the existence of spatially orthogonal modes for electromagnetic waves is fine for photons propagating under spatially confined conditions such as in wave guides and optical fibers [7,8], or in the immediate surroundings of a black hole [9]. We reiterate that the existing experimental radio wave demonstrations [2] hold only for N = 2. Rather than analyzing the theoretical treatments for errors, we use another approach to prove that the hypothesis that independent communication channels based on orbital modes can be selectively picked up by a proper antenna that is insensitive to standard plane wave modes violates the Second Law of Thermodynamics, which states that it is impossible to construct a perpetual motion machine of the second kind. First let us specify the necessary conditions that are essential for the utilization of the M-th orbital mode as a parallel independent information channel: i) A selective antenna must exist that is able to radiate in the M-th orbital mode. ii) The same antenna should selectively pick up a signal from an electromagnetic wave only at the M-th orbital mode while discarding all the other orbital and non-orbital mode components in that signal. According to Planck s Law [10], the a black-body (with unity emissivity) radiates in each polarization with a power spectral intensity 2

I( f ) = 4πhf 3 c 2 1, (1) where f is frequency, h = 6.626 *10 34 Js is Planck s constant, k = 1.381*10 23 JK 1 is Boltzmann s constant and T is absolute temperature. This means that a unit surface area of the black-body emits, in each polarization, the power P( f, ) = I ( f ) = 4πhf 3 c 2 within an infinitesimally small frequency band around f. Thus the total radiated power from a unit area is 3 4πhf NP( f, ) = NI ( f ) = N 2 hf / kt c e 1 (2), (3) where N=2 is the number of orthogonal polarization modes. Thus the Planck formula [10], is: P( f, ) = 8πhf 3 c 2. (4) Inspired by Nyquist s treatment of Johnson noise [11], we now devise the following gedanken experiment, see Figure 1: A large box (much larger than the wavelengths considered) is located in a thermal reservoir of temperature T. We assume that its internal walls are ideally black. Furthermore an isolated resistor (with radiation screening and thermal isolation) and a twisted-wave antenna tuned to the M-th orbital mode in a bandwidth of around frequency f are in the box and the resistor is connected to the electrodes of the antenna. We start from thermal equilibrium, i.e., a uniform temperature within the box, including the walls, the inherent thermal radiation, the antenna, the resistor, and the thermal isolation/screening. Figure 1. Outline of the gedanken experiment Conditions i) and ii) will result in the following situation: a) In accordance with condition i), the energy supplied by the resistor will be radiated by the antenna in the M-th orbital wave mode. This energy will be absorbed in the walls. The wall will emit thermal radiation in the form of plane waves [10] with a power given by Eq. 4. 3

b) In accordance with condition ii), the antenna can pick up a signal only at the M-th orbital mode while it will discard all plane wave components radiated by the walls of the box. This means that the antenna will not pick up any signal because the walls emit only plane waves [10]. Thus the energy will flow out from the resistor and cannot return. Therefore Boltzmann s Principle of Detailed Balance [12] cannot be satisfied. The resistor cools down, which implies that a temperature inhomogeneity is induced in the system in thermal equilibrium and hence the Second Law of Thermodynamics is violated. The only way to avoid violation of the Second Law of Thermodynamics with the above set-up is to suppose that the antenna also picks up plane wave modes. However, in that case the antenna cannot offer a separate information channel for the orbital mode. It should also be mentioned that it is well-known that corresponding antenna types that can emit circularly polarized waves (which also have non-zero angular momentum) are sensitive to plane waves because a plane wave will excite its relevant polarization mode. Thus a circularly polarized antenna will not violate the Second Law when it is used in the same gedanken experiment as described above. Methods and Conclusions We have presented and analyzed a gedanken experiment with a black body and a twistedwave antenna in thermal equilibrium. We have shown that the assumption that at a single frequency more than two independent information channels can be provided by an antenna violates the Second Law of Thermodynamics. In conclusion, twisted waves cannot carry information that is independent from the information contained in plane wave modes at the same frequency. Acknowledgments Discussions with Mihaly Benedict are appreciated. We are grateful for discussions and constructive comments to Claes-Göran Granqvist, Carl-Gustaf Ribbing, Derek Abbott, Ove Edfors, Julien Perruisseau-Carrier, Kai Chang and Greg Huff. We are grateful to the Authors of [5] and [6] for contacting us due to our manuscript in vixra.org and sending us their papers of high relevance; paper [5]: Ove Edfors and Anders Johansson; and paper [6]: Julien Perruisseau-Carrier, Michele Tamagnone and Christophe Craeye. We also grateful for email discussions with Bo Thide. References [1] Cartlidge E (2011) Adding a twist to radio technology. Nature News, February 22; doi:10.1038/news.2011.114. [2] Tamburini F, Mari E, Sponselli A, Thidé B, Bianchini A, Romanato F (2012) Encoding many channels on the same frequency through radio vorticity: First experimental test. New Journal of Physics 14:033001. [3] Tamburini F, Mari E, Thidé B, Barbieri C, Romanato F (2011) Experimental verification of photon angular momentum and vorticity with radio techniques. Applied Physics Letters 99:204102. 4

[4] Thidé B, Then H, Sjöholm J, Palmer K, Bergman J, Carozzi TD, Istomin YaN, Ibragimov NH, Khamitova R (2007) Utilization of photon orbital angular momentum in the low-frequency radio domain. Phys. Rev. Lett. 99:087701. [5] Edfors O, Johansson AJ, (2012) Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area? IEEE Trans. Antennas and Propagation 60:1126-1131. [6] Tamagnone M, Craeye Ch, Perruisseau-Carrier J (2012) Comment on Encoding many channels on the same frequency through radio vorticity: first experimental test, New Journal Physics, 14:118001. doi:10.1088/1367-2630/14/11/118001 [7] Mair A, Vaziri A, Weihs G, Zeilinger A (2011) Entanglement of the orbital angular momentum states of photons. Nature 412 (2001) 313 6. [8] Wang J, Yang JY, Fazal IM, Ahmed N, Yan Y, Huang H, Ren Y, Yue Y, Dolinar S, Tur M, Willner AE (2012) Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature Photonics 6:488 496. [9] Tamburini F, Thidé B, Molina-Terriza G, Anzolin G (2011) Twisting of light around rotating black holes. Nature Phys. 7:195-197. [10] Planck M, Morton M (1914) The Theory of Heat Radiation, P. Blakiston's Son & Co (Philadelphia). [11] Nyquist H (1928) Thermal agitation of electric charge in conductors), Physical Review 32:110 113. [12] Boltzmann L (1964) Lectures on gas theory", U. of California Press (Berkeley, CA, USA) 5