Geodetic Works during the Estimation of the Vertical Displacement of a Bridge under a Load Test

Similar documents
The Accuracy of Electronic Distance Meters over Short Distances

Municipal Act, 2001 Loi de 2001 sur les municipalités

HISTORICAL REVIEW OF MEASUREMENTS USING INVAR WIRES IN SERBIA

Србија DETERMINING TEMPERATURE DEPENDENCE OF COLLIMATION ERROR OF DIGITAL LEVEL LEICA DNA 03. Jelena GUČEVIĆ, Siniša DELČEV, Vukan OGRIZOVIĆ

product manual H-3220A Benkelman Beam

Maintaining Length and Angle Standards in The Republic of Serbia within the Geodetic Metrological Laboratory

Municipality of Grey Highlands Policy

Efficient Local Deformation Recognition on Highway Bridges

The State of Michigan Transportation Asset Management Council 2006 PASER Survey Of Shiawassee County

DETERMINATION OF AIR REFRACTION INFLUENCE ON TRIGONOMETRIC HEIGHT DIFFERENCES

Comparison of Temperature Loadings of Bridge Girders J. Římal, D. Šindler

Hurricane Preparation and Recovery. October 11, 2011 Jon Nance, Chief Engineer, NCDOT

NUMERICAL MODELLING IN ENVIRONMENTAL IMPACT ASSESSMENT OF CONSTRUCTION WORKS WITHIN RIVER BAYS - A CASE STUDY

THE WEATHER CASE STUDIES

TENSIONING SECTION. PFISTERER provides a full range of products for tensioning applications TENSIONING SECTION TENSOREX PHANTOM TENSOREX C+

1 City of Edmonton Quesnell Bridge, Roads and Associated Structures Assessment

Snow Removal Policy WARREN COUNTY ENGINEER S OFFICE (WCEO) WARREN COUNTY HIGHWAY DEPARTMENT. October 16, 2014

WINTER MAINTENANCE DECISIONS SUPPORT SYSTEMS IN POLAND Paweł Sobiesiak

Expert paper GIS CONTENT PROPOSAL FOR UNDERGROUND MINING ROOMS

GEOMATICS ENGINEERING / SURVEYING

Load Capacity Evaluation of Pennsylvania s Single Span T-Beam Bridges

VIBRATION MEASUREMENT OF TSING MA BRIDGE DECK UNITS DURING ERECTION

Observation of Landslide Movements by Geodetic and Borehole Tilt Measurements

Site Surveying Procedures for Construction and the Built Environment

TESA MICROMASTER Electronic Micrometers with Digital Display

REQUEST FOR PROPOSALS

Assignment 4: VBA Programming

Organized Chain-Up and VSL

product manual H-4204 Proving Ring Penetrometer

Published in: Proceeding of 9th SENVAR / 2nd ISESEE, Shah Alam, Malaysia, December 2008

Chapter 3 Snow & Ice Training Program Annual Review Checklist Wing Plow Operational Guidelines

Colorado Department of Transportation Structure Inspection and Inventory Report (English Units)

City of Camrose Winter Road Maintenance Policy

TOWN OF GRAND FALLS WINDSOR

Town of Windsor. Department of Public Works

DRIVE RESPONSIBLY, ARRIVE SAFELY! Advice for driving in wintry conditions. We wish you a safe and comfortable journey!

BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES

Leveling. 3.1 Definitions

Weather Responsive Traffic Management. WYDOT VSL Project. October 2011

Upgrade of 5m-Bench System for Traceable Measurements of Tapes and Rules at SASO-NMCC Dimensional Laboratory

ESTIMATION OF THE QUALITY OF BUILT-IN CONCRETE BY THE ULTRASOUND OBSERVATIONS

MONITORING TRAFFIC LOADING FOR OPTIMIZED ASSESSMENT OF BRIDGES

GEODETIC WORKS FOR THE SLOVAK GAS INDUSTRY

Track stiffness assessment. Abstract

DYNAMIC INVESTIGATIONS ON REINFORCED CONCRETE BRIDGES

City of Saginaw Right of Way Division Snow and Ice Removal Policy January 18, 2016

Bridge Risk Modeling

CITY OF NEW LONDON WINTER ROAD & SIDEWALK MAINTENANCE POLICY

Introduction To Metrology

Surveying the Old Underground Mine Works Using Innovative Techniques

Monitoring Scour Critical Bridges During Floods For Local Bridge Owners. Presented by

STATISTICAL ANALYSIS OF LAW ENFORCEMENT SURVEILLANCE IMPACT ON SAMPLE CONSTRUCTION ZONES IN MISSISSIPPI (Part 1: DESCRIPTIVE)

Turbine Meter TRZ 03 PRODUCT INFORMATION. Reliable Measurement of Gas

Movement assessment of a cable-stayed bridge tower based on integrated GPS and accelerometer observations

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA

CE415L Applied Fluid Mechanics Laboratory

Experiment Two (2) Torsional testing of Circular Shafts

Safe-T-Span High Load Capacity Grating

FORECASTING THE INVENTORY LEVEL OF MAGNETIC CARDS IN TOLLING SYSTEM

Study on Shandong Expressway Network Planning Based on Highway Transportation System

TRAFFIC ALERT FOR WEEK OF February 4 8, 2008

PEACE REGION (PEACE RIVER- HIGH LEVEL AREA) GEOHAZARD ASSESSMENT CALL-OUT PH56: EMBANKMENT FAILURE ON HWY 35:08 SOUTHWEST OF MEIKLE RIVER CROSSING

EUROPEAN INVESTMENT BANK

Mapping a Nation in 3D Singapore s Journey. Bryan Chew Registrar of Titles Assistant Chief Executive Singapore Land Authority

INTRODUCTION TO ENGINEERING SURVEYING (CE 1305)

What s New in the World of Winter Maintenance Technology. Laser Road Surface Sensor (LRSS) Functional Description

Conic Sections. Pre-Calculus Unit Completing the Square. Solve each equation by completing the square x 2 + 8x 10 = 0

Winter Maintenance on Provincial Highways

MUNICIPALITY OF TRENT HILLS WINTER CONTROL QUALITY STANDARDS

TOPOGRAPHIC MONITORING OF A WATER TANK IN THE WIDENING WORKS OF EIXO NORTE-SUL HIGHWAY IN LISBON

FY 2018 Ten Year Capital Plan Review Project List

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

OXFORD HEIGHTS SUBDIVISION EMERGENCY EVACUATION PLAN

Development of System for Supporting Lock Position Adjustment Work for Electric Point Machine

Monitoring Vertical Displacements by Means of Geometric Levelling for Sky Tower Building from Floreasca City Center, Bucharest

West Tennessee Construction June 14-21, 2017

PW 001 SNOW REMOVAL AND SANDING FOR ROADWAYS AND SIDEWALKS October 6, 2014 (#223-14) Original October 19, 2015; October 15, 2018 Public Works

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

INTELLIGENT PAVEMENTS THROUGH INSTRUMENTATION EARLY RESULTS FOLLOWING AN EXTREME RAINFALL EVENT

ROAD INFORMATION SYSTEM FOR MAINTENANCE MANAGEMENT OF ROAD INFRASTRUCTURE PROJECTS

Book Automation for sectional doors up to 12 m 2 and overhead doors up to 11 m 2

COUNCIL POLICY MANUAL

NEWS RELEASE. Province boosts winter highway safety measures

Annual TTFO Meeting April 10, 2018 Michael J. Wittman, P.S. Chief Surveyor / GIS Coordinator

Testing DistoX Device for Measuring in the Unfavourable Conditions

User perceptions of highway roughness. Kevan Shafizadeh and Fred Mannering

The elimination of vertical refraction in trigonometric measurements of height differences

CIVIL ENGINEERING AND BUILDING SERVICE TOPOGRAPHIC PERMANENT LANDMARKS NETWORK. SPATIAL COORDINATE OPTIMIZATION

Severe Storm Response Version # 1-0-1

Summary, Review, and Test

Operational Applications of Awos Network in Turkey

Measurement of Horizontal Distances. the distance between two points means the horizontal distance

Development and Implementation of the Japanese Enhanced Fujita Scale

DAYTON INTERNATIONAL AIRP0RT DAYTON, OHIO. PFC Quarterly Status Report - Revenue and Expenditures. For the Quarter July 1 through September 30, 2018

DEVELOPMENT OF A NOVEL BRIDGE WEIGH-IN- MOTION SYSTEM

August 10, 2007 File:

FLT5A FLT5A. abc. abc. Thermometer User Guide. Thermometer User Guide. Internet:

CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF TRANSPORTATION SCIENCES

Materials. Use materials meeting the following.

COMPARISON OF DIGITAL CADASTRAL MAP AREAS IN GAUSS- KRUGER AND UTM PROJECTION

Transcription:

37 Geodetic Works during the Estimation of the Vertical Displacement of a Bridge under a Load Test Gučević, J., Delčev, S., Ogrizović, V., Pejič, M., Popović, J., and Pejović, M. University of Belgrade, Faculty of Civil Engineering, Department of Geodesy and Geoinformatics, Bulevar kralja Aleksandra 73, 11000 Belgrade, Serbia, Website: www.grf.bg.ac.rs, E-mail: jgucevic@grf.bg.ac.rs, delcev@grf.bg.ac.rs, vukan@grf.bg.ac.rs Abstract Observation and maintenance of bridges is performed according to the observation and maintenance manual, planned during the design phase. The goal of this research is presentation of necessary surveying activities, performed after the revitalization of the main bridge construction. We will present preparatory geodetic works, measuring results and data processing during the examination of the vertical displacement of the bridge under the load test. Vertical bridge displacements are monitored by the geodetic methods and techniques assuming determination of the point heights in different loading phases and their mutual comparison. Determination of the vertical displacements assume the application of geometric levelling, through the measurement planning, calibration of instruments and accessories, measuring, and processing of the measurement results. We will analyze all geodetic activities according to the working conditions and prescribed accuracy of the vertical bridge displacements ( σ VD = 1 mm), presenting an example of the examination of the main span of the Gazela Bridge, over the Sava river in Belgrade. Key words: metrology, geodetic networks, accuracy, vertical displacement. 1 INTODUCTION Observation and maintenance of bridges is done in accordance with the observation and maintenance manual, planned as early as in the design stage. The manual includes the observation and maintenance of the structure surroundings, securing the bank and the river bed in the bridge area, observation of pillars and pylons of the bridge, observation of the main support structure, checking of cables, checking of bearings, inspection of dilatation, roadway, railing, the condition of installations and elements that carry installation. Before putting the bridge in service, after construction or reconstruction, it is necessary to observe the structure of the bridge under full load, to determine how the structure behaves and whether it should be put in service. The values of the vertical deflection, i.e. deviations from the normal state envisaged by the project is determined within the planned phases and disposition of load. The deflection of the structure is determined by using geodetic methods and techniques, which are planned and calculated in accordance with the conditions of accuracy, environment and working conditions. It is necessary to perform zero measurement, within which the position of the structure without load is determined. The position of the structure is determined in relation TS 7 Monitoring of structures INGEO 014 6 th International Conference on Engineering Surveying Prague, Czech republic, April 3-4, 014

38 INGEO 014 to the stable points set outside the zone of influence. During the gradual loading carried out by different dispositions, observations are made in order to determine the deflection of the points selected on profiles on the construction until it is maximally loaded. Location of measuring points is determined by the designer. This paper aims to present the performed surveying activities that determine the vertical deflection of the structure of the Gazela Bridge in Belgrade after rehabilitation. SUBJECT OF ESEACH Belgrade's busiest bridge over the Sava iver is the Gazela Bridge. Its chief designer is Milan Đurić, Professor at the Faculty of Civil Engineering in Belgrade. The bridge was built in the period from 1966 to 1970, as a combination of beam and vault, and is 33 meters long and 7.5 meters wide. Total roadway width is 1.8 meters - has three lanes in both directions. The bridge was designed to carry about 40,000 vehicles a day, and nowadays it carries around 165,000 vehicles per day. As a probable consequence of the lack of the bridge maintenance in the last 40 years, in 010 a crack was registered in the main frame and its rehabilitation soon started. Within the rehabilitation the load test of the main span of the steel bridge structure was carried out. For the load test, over 500 measuring points along the entire structure were set. More than 0 km of cable were retracted and connected to the measuring stations. For the load test 3 trucks weighing about 5 tons were used. They moved across the bridge on a set formation and in various speeds of 0 to 50 kilometres per hour Fig 1. During the bridge testing other planned activities were carried out such as improving the dynamic driving characteristics of the traffic, taking samples for testing, inspection and checking of parts of the structure that could not be possible to inspect during active traffic. More than 50 people actively participated in the inspection, which was conducted according to the previously developed plan and programme. 3 SUVEYING ACTIVITIES Figure 1 Gazela Bridge Determination of vertical displacements implied the application of geometric levelling through: measurement planning, measurement and processing of the measurement results.

Gučević J. et al.: Geodetic works during the estimation of the vertical... 39 3.1 MEASUEMENT PLANNING To determine the erase differences in heights of profile points, the application of detailed levelling was used. When using the detailed levelling it is necessary to take into account the non-parallel lines of sight and the level axis, i.e. angle i which the line of sight forms with the horizon. Angle i acts as a systematic error in the function of the distance between the instrument and the rod, Fig.. Δ j tan i =, j = 1... n, (1) d j Figure Detailed levelling Previous assessment of accuracy of geometric levelling is performed starting from certain sources of errors in the expression for the mean squared error of height difference at the station (Mrkić,., 1991.): 1 σ r + σ o σ h σ D d + Δh σ M + σ z n ρ Δ = +, () If we start from the general values for certain sources of errors: σ D = ± 0μm random error of division of rod; σ r = ±0. 05 - random refraction; σ o = ±0. 38 - random error in rod readings; σ M = ± 7 μm rod-pair scale error; σ z = ± 9μm rounded readings error (Mrkić,., 1991.), mean squared error of the height difference at the station of one levelling side (measured once n = 1) for the length of the line of sight of 50 m, with a maximum height difference at the station Δh = 1 m is 0,079 mm. Considering that it is a detailed levelling which involves the application of various line of sight lengths, it is necessary to calculate the allowed values of the angle i. The calculation is done so that the accuracy of height difference measurement at the station is within the planned accuracy of determining vertical displacement σ VD =1 mm. Starting from the required accuracy of vertical displacements ( σ VD = 1 mm), expression () and expression (1), we get: σ = σ σ (3) VD + Δ h Δh i where σ Δ h i is error of the height difference at the station that occurs due to the angle i. σ Δ h i By rearranging the expression (3) and substituting appropriate numerical values we get = 0,997 mm. For maximum projected length of the line of sight of 65 m, according to the expression (1) we get the value of the angle i of 3.. In accordance with the obtained parameters the measurement was realised.

40 INGEO 014 3. MEASUEMENT Measurements were realised by 4 working groups in the period from 10 p.m. (11/08/01) to 11 a.m. (1/08/01). A set of equipment of a working group for performing measurement of detailed levelling on profiles of the Gazela Bridge consists of: Sokkia digital level SDL30, fibreglass barcode rods with the tubular spirit level, tripod, records of measurement, sketch, accessories for computing, Motorola radio transmitters for communications and a lamp to illuminate divisions of the rod. Calibration of Sokkia digital levels SDL30 was made in the Metrology Laboratory ML160 of the Faculty of Civil Engineering, University of Belgrade. Special attention was paid to rectification of i angle, so that for all the instruments its value is reduced to the value less than 3. Metal adapters were built in the rods placed on the points on the road. The adapter s size (additive constant of the rod) for each pair of rods was determined in the laboratory ML160. The working group for the realisation of measurements consisted of two experts and three rod workers. One expert kept the measurement records and managed and led the activities of the working group. The other expert was the operator with the instrument and the assistant in the working group. Other members of the working group followed the dynamics imposed by the group leader. Height differences were measured in relation to 4 benchmarks 1,, 3 and 4, stabilised on columns K1 and K from the side of Novi Beograd and columns K3 and K4 from the side of Belgrade. The plan stipulated that two working groups carried out measurements on the Novi Beograd side in the profiles from U- 1 to U- 10, and the other two working groups on the side of Belgrade in the profiles from U- 19 to U-10. The measurements were carried out with different line of sight lengths. For each profile point, the length up to 1 cm was measured, and reading on the rod up to the tenth of a millimetre. Loads were carried out in phases F-A, F-B and F-C. F-A phase refers to 4 profiles and 5 load dispositions of the bridge span along the river bank towards Novi Beograd. Phase F-B refers to 11 profiles and 10 load dispositions of middle span of the bridge. Phase F-C refers to 4 profiles and 5 load dispositions of the bridge along the bank to Belgrade. A total of 0 load dispositions were carried out that lasted an average of 0 min. Figure 3 shows the distribution of profiles and measuring points (the two middle profiles that go mid asphalt are not shown). Figure 3 Distribution of profiles and measuring points

Gučević J. et al.: Geodetic works during the estimation of the vertical... 41 3.3 MEASUEMENT DATA POCESSING AND VALUES OF VETICAL BIDGE DEFLECTIONS Measurement data processing and determination of vertical deflections of 19 profiles with 5 measuring points include: calculating point heights on the profiles, forming differences and comparing the obtained values. The method of calculating deflections, within each phase, is conducted in the traverse of geometric levelling, related to the height of benchmarks H and 1 H 3 and the traverse related to the height of benchmarks H and H. In order to determine 4 heights at measuring points by profiles we first determined heights of binding points H a. H a = H + Δh (4) Based on the heights of binding points H a and read divisions of the rods l a that stood on the binding points the heights of the line of sight were determined, separately for each station. H = H + l (5) V a a Based on the line of sight height and the read division of the rod, which stands on the measuring point in the profile, the height of the measuring point was determined: H MP H l j V MP j = : j=1 19. (6) For the disposition of the loading phase F-B differences in relation to the initial disposition were formed and shown in the diagram (Fig. 4). 10 0 5 50 75 100 15 150 175 00 5 50 75 300 35 350 [m] Displacements [cm] 5 0-5 -10-15 -0-5 -30 F- B1 F- B F- B3 F- B4 F- B5 F- B6 F- B7 F- B9 F- B11 F- BO' -35-40 Figure 4 The diagram of the loading phase F-B The final and independent quality control of the data obtained was carried out by analysing the results of measurements of the profile 10 considering the fact that it was a common profile for the working groups 1 and 3, as well as for groups and 4. By analysing differences in all stages and load dispositions on the common profile 10 for all working groups, the mean value of differences of 0.7 mm was established, which is within normal limits for this type of work.

4 INGEO 014 4 CONCLUSION Observations of bridges and their rehabilitation aim to provide the proper technical maintenance of the bridge, to timely detect the resulting defects and create optimal conditions for their elimination. General inspection of bridges is done at least once every six years, and includes the inspection of: dilatation devices, protective bumpers and fencing, drainage, bearings and joints, corrosion protection, support structure of the bridge, pillars, geodetic control (supporting points and verticality of the pillars) and other elements whose observation is defined in a special manual on the bridge observation. For the steel Gazela Bridge on the international road E-75 in Belgrade, it can be said that the programmes of observation, maintenance and rehabilitation have not been carried out or have been carried to a lesser extent (Bojović, A., Velović, N., 010.). Important dates are shown in Table 1. Table 1 The programmes of maintenance and rehabilitation for the steel Gazela Bridge Year Activity 196-1966 Project: Directorate for the Construction of Bridges, Beograd 1966-1970 Construction: MIN, Niš; Goša, Sm. Palanka; Mostogradnja, Beograd 1970, December Opened to traffic 1987 eplacement of guardrails in the separating zone and bearings 1987 epair of the drainage system 199 Two pipes of the heating system repaired The need for rehabilitation was imposed in 010 when a crack on the main frame was registered. The Gazela Bridge is a part of the highway that goes through the city, carrying the entire transit traffic in the capital. Complete rehabilitation of the bridge lasted months, including the observation of the structure under full load. A part of the observation was carried out using detailed levelling with different line of sight lengths. For the maximum projected length of the line of sight of 65 m, it is necessary to use a level with an angle i smaller than 3.. In accordance with this requirement, special attention was paid to adjustment of instruments and accessories. The size of deflection at the measuring points for realisation of the load disposition is in the interval of +5. cm to -38.3 cm. The values obtained are consistent with the expected values confirming the stability of the steel structure, and on August 11, 01, the project of reconstruction of the Gazela Bridge was completed. EFEENCES MKIĆ,.: Geodetska metrologija, Naučna knjiga, ISBN 863410661, Beograd, 1991. BEGOVIĆ, A.: Inženjerska geodezija 1, Naučna knjiga, Beograd, 1990. BOJOVIĆ, A., VELOVIĆ, N.: Sanacija mosta Gazela u Beogradu - projektovane mere sanacije čeličnih mostovskih konstrukcija, Izgradnja, 010, vol. 64, br. 7-8, str. 461-481.