Chris G. Van de Walle

Similar documents
What so special about LaAlO3/SrTiO3 interface? Magnetism, Superconductivity and their coexistence at the interface

Spectroscopy of correlated electrons in nickelates and titanates

Origin of Metallic States at Heterointerface between Band Insulators LaAlO 3 and SrTiO 3

Band alignments between SmTiO 3, GdTiO 3, and SrTiO 3

Electrostatic charging and redox effects in oxide heterostructures

arxiv: v1 [cond-mat.str-el] 16 Jan 2015

arxiv: v1 [cond-mat.mtrl-sci] 9 Apr 2007

O xide interfaces show surprisingly rich electronic behavior that is not present in the bulk compounds.

Effect of Sr-doping of LaMnO3 spacer on modulation-doped two-dimensional electron gases at oxide interfaces

Nanoxide electronics

Magnetoresistance of 2D and 3D Electron Gas in LaAlO 3 /SrTiO 3. Heterostructures: Influence of Magnetic Ordering, Interface Scattering and

Localized vs. delocalized character of charge carriers in LaAlO 3 / SrTiO 3. superlattices

Nanoxide electronics

University of Munich, Theresienstr. 41, Munich, Germany and b Department of Physics, University of California,

Polar Discontinuity Doping of the LaVO 3 /SrTiO 3 Interface

Titanium d xy ferromagnetism at the LaAlO 3 /SrTiO 3 interface

Emergent Phenomena in two-dimensional electron gases at oxide interfaces

Two dimensional electron gas at oxide interfaces

conditions in oxide heterostructures

Osaka University, Toyonaka , Japan. University of Tokyo, Kashiwa, Chiba , Japan. Kawaguchi, Saitama , Japan

REPORT DOCUMENTATION PAGE

In situ optical characterization of LaAlO 3 epitaxy on SrTiO 3 (001)

Theory of Hydrogen-Related Levels in Semiconductors and Oxides

arxiv:cond-mat/ v1 9 Aug 2006

Non-Fermi Liquids and Bad Metals in NdNiO3 Thin Films

Electrostatic Tuning of Superconductivity. Allen M. Goldman School of Physics and Astronomy University of Minnesota

Supplementary Information for Dimensionality-Driven. Insulator-Metal Transition in A-site Excess. Nonstoichiometric Perovskites

Origin of the 2DEG at the LAO/STO Interface

Oxide Interfaces: Perspectives & New Physics

Correlation-Driven Charge Order at a Mott Insulator - Band Insulator Digital Interface

SUPPLEMENTARY INFORMATION

Abstract Using polarized neutron reflectometry (PNR) we measured the neutron spin

Controlling Kondo like Scattering at the SrTiO 3 based Interfaces

Coexistence of Magnetic Order and Two-dimensional Superconductivity at LaAlO3/SrTiO3 Interfaces

Introduction to Photoemission Spectroscopy

arxiv: v1 [cond-mat.mtrl-sci] 2 May 2011

High resolution ion beam analysis. Torgny Gustafsson

Tunable conductivity threshold at polar oxide interfaces

Materials by Computational Design A Bottom Up Approach

Band alignment of epitaxial SrTiO 3 thin films with (LaAlO 3 ) 0.3 -(Sr 2 AlTaO 6 ) 0.7 (001)

arxiv: v1 [cond-mat.str-el] 5 Jan 2010

The Effects of Core-level Broadening in Determining Band Alignment at the Epitaxial SrTiO 3 (001)/p-Ge(001) Heterojunction

University of California Postprints

Fabrication and Characteristic Investigation of Multifunctional Oxide p-n Heterojunctions

arxiv: v1 [cond-mat.str-el] 18 Dec 2015

S emiconductor heterostructures have brought about prominent advances in a variety of mainstream electronics

Rashba spin-orbit coupling in the oxide 2D structures: The KTaO 3 (001) Surface

Chris G. Van de Walle Materials Department, UCSB

PCCP PAPER. 1 Introduction TH Vladislav Borisov,* ab Sergey Ostanin b and Ingrid Mertig ab. View Article Online View Journal View Issue

Supporting Information for PbTiO 3

JOHN G. EKERDT RESEARCH FOCUS

Material Science II. d Electron systems

First NanoARPES Available at SOLEIL: A Powerful Tool for Studying Advanced Materials

Origin of the Superior Conductivity of Perovskite Ba(Sr)SnO 3

Thickness-induced anomalous angular-dependent magnetoresistance of La 2/3 Sr 1/3 MnO 3 thin films grown on SrTiO 3

Ionic relaxation contribution to the electronic reconstruction at the n-type LaAlO 3 ÕSrTiO 3 interface

Multiple conducting carriers generated in LaAlO 3 /SrTiO 3 heterostructures

JOHN G. EKERDT RESEARCH FOCUS

Quantum Confinement in Oxide Heterostructures:

Two-dimensional electron gas in SrTiO3

Oxide Films & Nanostructures on Silicon for Thermal Energy Harvesting in Microelectronic Devices

in this web service Cambridge University Press

Experimental Investigation of Electronic and Magnetic Properties of LaAlO 3 -SrTiO 3 Interfaces

This is the published version of a paper published in Physical Review Letters. Citation for the original published paper (version of record):

A First Principles Study on Oxide Interfaces

Effects of substrate on the dielectric and tunable properties of epitaxial SrTiO 3 thin films

Depth profile study of ferroelectric PbZr 0.2 Ti 0.8 O 3 films

UvA-DARE (Digital Academic Repository) When X-rays and oxide heterointerfaces collide Slooten, E. Link to publication

Shubnikov-de Haas effect in low electron density SrTiO 3 : Conduction band edge of SrTiO 3 redux

Holcomb Group Capabilities

National Accelerator Laboratory, Menlo Park, California 94025,

Near-Infrared to Vacuum Ultraviolet (VUV) Dielectric Properties of LaAlO 3

Strain-induced single-domain growth of epitaxial SrRuO 3 layers on SrTiO 3 : a high-temperature x-ray diffraction study

Oxide Nanoelectronics. Cheng Cen. Bachelor of Science, University of Science and Technology of China, 2004

Origin of interfacial conductivity at complex oxide heterointerfaces: possibility of electron transfer from water chemistry at surface

arxiv: v1 [cond-mat.mtrl-sci] 26 Oct 2015

Supplementary Figure 1 Comparison between normalized and unnormalized reflectivity of

Oxide Junction Devices

Thermoelectric Oxide Materials For Electric Power Generation

Water-cycle mechanism for writing and erasing

Skyrmions in quasi-2d chiral magnets

1.5 K 297 K. Ti IF. Ti IF-2

Division (PSE), Thuwal , Saudi Arabia

arxiv: v1 [cond-mat.mtrl-sci] 19 Jan 2018

THESIS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY. Electrical Transport Properties of Nanostructured SrTiO3/LaAlO3 Interface PIER PAOLO AURINO

SIGNATURES OF SPIN-ORBIT DRIVEN ELECTRONIC TRANSPORT IN TRANSITION- METAL-OXIDE INTERFACES

arxiv: v1 [cond-mat.mtrl-sci] 8 Feb 2013

A new era in surface diffraction pulsed laser deposition of complex metal oxide thin films

High T c superconductivity at the interface between the CaCuO 2 and SrTiO 3 insulating oxides

Aberration-corrected TEM studies on interface of multilayered-perovskite systems

Tailoring high temperature quasitwo-dimensional

Electro-shape-memory effect in Mn-doped BaTiO 3 single crystals and in situ observation of the reversible domain switching

O xide interface attracts great interest since the discovery of high mobility electron gas in the interface of

STRUCTURAL AND MAGNETOTRANSPORT STUDY OF SrTiO 3-δ /Si STRUCTURES GROWN BY MOLECULAR BEAM EPITAXY. Daniel Alexander Currie, B.S.

SUPPLEMENTARY INFORMATION

Zeeman splitting of single semiconductor impurities in resonant tunneling heterostructures

DISTRIBUTION STATEMENT A

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Ab initio study of the two-dimensional metallic state at the surface of SrTiO 3 : Importance of oxygen vacancies

Transcription:

Complex oxide interfaces Chris G. Van de Walle Anderson Janotti, Lars Bjaalie, Luke Gordon, Burak Himmetoglu, K. Krishnaswamy Materials Department, University of California, Santa Barbara ES213 June 11-14, 213 Williamsburg, Virginia Acknowledgments NSF, ARO, ONR; XSEDE http//www.mrl.ucsb.edu/~vandewalle / d ll

Complex oxides ABO 3 perovskites Many interesting properties B O A SrTiO 3 A = Sr, B= Ti LaAlO 3 A = La, B= Al Complex oxides interfaces High-k dielectrics Colossal magnetoresistance Ferroelectricity Superconductivity Charge ordering Spin dependent transport Interplay of structural, electronic and transport properties Applications Sensors Electrodes in fuel cells Memory devices (memristors)

SrTiO 3 and LaAlO 3 Wide-band-gap oxides A two-dimensional electron gas (2DEG) STO LAO forms at the STO/LAO interface Conduction band Conduction band LAO 2DEG ~1 13 e - /cm -2 3.2 ev 56 5.6 ev STO Valence band Valence band A. Ohtomo and H. Y. Hwang, Nature 427, 423 (24). 2DEG appears only for LAO layers thicker than 4 unit cells S. Thiel et al. Science 313, 1942-1945 (26).

The two-dimensional electron gas at the STO/LAO interface Where do the carriers come from? 1. Polar catastrophe/ surface 2. Oxygen vacancies (near the interface or in STO bulk) 3. Atomic intermixing (STO substrate, LAO surface, ) 3. Electronic reconstructions Ohtomo & Hwang, Nature 427, 423 (24). Mannhart et al., MRS Bull. Nov. 28. Mannhart et al., MRS Bull. Nov. 28. Brinkman et al., Nat. Matter. 6, 493 (27). Kalabukhov et al., Phys. Rev. B 75, 12144(R) (27). Siemons et al., Phys. Rev. Lett. 98, 19682 (27). Bristowe et al., Phys. Rev. B 83, 2545 (211). Li et al, Phys. Rev. B 84, 24537 (211). Nakagawa et al., Nat. Matter. 5, 24 (26). Qiao et al., Surf. Sci. 65, 1381 (211) Pentcheva and Pickett, Phys. Rev. B 74, 35112 (26) Popovic et al, Phys. Rev. Lett. 11, 25681 (28)

(1) STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO LaO TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential

(1) STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO LaO TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential Polar catastrophe

(1) STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO 5e.5e LaO Problem arises from ionic picture All layers originally neutral LaO ( donor ) layer donates.5 e to AlO 2 on either side At the interface extra.5 e!...

(1).5e STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO LaO TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential Polar Catastrophe

(1).5e STO/LAO interface LaO X X X X LaO LaO X TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential

(1).5e If take origins of electrons into account STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] X X X X LaO LaO X TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential there is no Polar catastrophe!

(1) Free electrons bound to a plane of positive fixed charges.5e STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO LaO TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] Ideal interface.5e per unit cell area n=3x1 14 cm -2

(1) If free electrons leak away to the top surface, the 2DEG density decreases X.5e STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO LaO TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential

SrTiO 3, LaAlO 3, and STO/LAO from first principles -Density functional theory, hybrid functional (HSE) J. Heyd, G.E. Scuseria and M. Ernzerhof, J. Chem. Phys.118, 827 (23); 124, 21996(E) (26). Conduction band LaAlO 3 SrTiO 3 Valence band Conduction band Ti d (t 2g < e g ) Valence band O 2p bands Conduction band Al 3s, La 5d Valence band O 2p bands

First-principles calculations Total charge 5e.5 per interface! n=3x1 14 cm -2 A. Janotti, L. Bjaalie, L. Gordon, C. G. Van de Walle, Phys. Rev. B 86, 24118(R) (212).

Note First-principles calculations Charge is not on single Ti layer at the interface! Not Ti 3+! Total charge 5e.5 per interface! n=3x1 14 cm -2 A. Janotti, L. Bjaalie, L. Gordon, C. G. Van de Walle, Phys. Rev. B 86, 24118(R) (212).

Band alignments Density functional theory, hybrid functional Conduction band Quantum well with equivalent interfaces Subbands Valence band LaAlO 3 SrTiO 3 LAO STO LAO In agreement with experimental results of Chambers et al., Surface Science Reports (21).

First-principles calculations Subbands from (STO)8.5/(LAO)7.5 superlattice Popovic et al., Phys. Rev. Lett. 11, 25681 (28). Chen et al., Adv. Matter. 22, 2881 (21). La Sr Sr La

First principles versus Schrödinger-Poisson Schrödinger-Poisson simulations Input parameters Band offsets Dielectric constants Effective masses

First principles versus Schrödinger-Poisson

STO/LAO/STO Symmetric heterostructure n=3x1 14 cm -2 STiO SrTiO 3 LaAlO 3 STiO SrTiO 3 TiO 2 TiO 2 LaO AlO 2 LaO AlO 2 LaO TiO 2 + + + - - Flat potential across LAO 5e.5e per unit cell per interface charge density conduction band valence band

STO/LAO/STO Asymmetric heterostructure LaO-terminated on the left, AlO 2 -terminated on the right SrTiO 3 LaAlO 3 SrTiO 3 TiO 2 TiO 2 LaO + LaO AlO 2 TiO 2 TiO 2 - + Potential increase across the LAO layer Low 2DEG density electrons leak to other interface charge density conduction band valence band

STO/LAO Surface LAO surface AlO 2 -terminated 2 n 1 13 cm -2 SrTiO 3 LaAlO 3 SrTi 3 TiO 2 TiO 2 LaO + LaO AlO 2 + - potential increase across the LAO layer lower 2DEG density electrons leak to surface electrons go into surface states on LAO surface

(1) If free electrons leak away to the top surface, the 2DEG density decreases X.5e STO/LAO interface [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] LaO LaO TiO2 TiO2 TiO2 [Ti 4+ (O 2- )2 ] [Sr 2+ O 2- ] potential

STO/LAO Surface LAO surface passivated SrTiO 3 LaAlO 3 TiO 2 TiO 2 LaO + LaO AlO 2 + - Potential almost flat across the LAO layer High 2DEG density hydrogen passivation, or metal cap layer (work function!) R. Arras et al., Phys. Rev. B 85, 12544 (212).

Other materials combinations? STiO/GdTiO SrTiO3/GdTiO3 superlattices Schrödinger-Poisson simulations STO/GTO.5 e- per unit cell per interface P. Moetakef et al., Appl. Phys. Lett. 99, 232116 (211).

(1) STO/LAO STO/GdTiO 3 [Al 3+ (O 2- )2] LaO [La 3+ O 2- ] TiO 2 [Ti 3+ (O 2- )2] GdO [Gd 3+ O 2- ] TiO 2 GdO TiO 2 LaO TiO 2 LaO GdO TiO2 TiO2 TiO2 TiO2 TiO2 TiO2 n=1 13 cm -2 n=3x1 14 cm -2 P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. Van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 99, 232116 (211).

Why is STO/GTO different from STO/LAO? Interface is not different Confirmed by first- principles i calculations l But STO can be grown with high quality on top of GTO! symmetric interfaces Superlattices Full 2DEG density GTO surfaces auto-passivated TiO 2 [Ti 3+ (O 2- )2] GdO [Gd 3+ O 2- ] TiO 2 GdO TiO 2 GdO TiO2 TiO2 TiO2 n=3x1 14 cm -2 P. Moetakef, T. A. Cain, D. G. Ouellette, J. Y. Zhang, D. O. Klenov, A. Janotti, C. G. Van de Walle, S. Rajan, S. J. Allen, and S. Stemmer, Appl. Phys. Lett. 99, 232116 (211).

Mott physics SrTiO 3 versus GdTiO 3 SrTiO 3 GdTiO 3 Conduction band Ti d states Valence band, O p states

2+ 3+ Mott physics SrTiO 3 versus GdTiO 3 SrTiO 3 GdTiO 3 Conduction band Ti d states Valence band, O p states

Mott physics SrTiO 3 versus GdTiO 3 SrTiO 3 GdTiO 3 GdTiO 3 Conduction band Ti d states Ti d states Valence band, O p states

GdTiO3 properties GTO a 3d 1 Mott insulator Mott/band insulator interface GTO unit cell 2-atom orthorhombic, Pnma space group STO GTO

U GdTiO3 properties

SrTiO3/GdTiO3 superlattices band offsets Calculating band offsets by using the (11) interface no electron transfer Macroscopic average x1 G Conti et al J Appl Phys 113 G. Conti et al. J. Appl. Phys. 113, 14374 (213).

Summary First-principles calculations Schrödinger-Poisson modeling Hybrid functional capable of capturing the physics of Mott insulators and the STO/GTO system Electrons in the 2DEG at STO/LAO and STO/GTO are intrinsic to the interface Asymmetry y of interfaces (or interface+surface) causes electrons to leak away in the STO/LAO case And so, my fellow theorists ask not where the electrons come from ask where the electrons disappear to. Reference A. Janotti, L. Bjaalie, L. Gordon, and C. G. Van de Walle, Phys. Rev. B 86, 24118(R) (212).