Introduction to Quantum Physics. Early Atomic Physics

Similar documents
Early Quantum Theory & Models of the Atom (Ch 27) Discovery of electron. Blackbody Radiation. Blackbody Radiation. J. J. Thomson ( )

Atomic Structure Discovered. Dalton s Atomic Theory. Discovery of the Electron 10/30/2012

Atomic Theory. Developing the Nuclear Model of the Atom. Saturday, January 20, 18

Preview. Atomic Physics Section 1. Section 1 Quantization of Energy. Section 2 Models of the Atom. Section 3 Quantum Mechanics

Models of the Atom. Spencer Clelland & Katelyn Mason

Constants & Atomic Data. The birth of atomic physics and quantum mechanics. debroglie s Wave Equations. Energy Calculations. λ = f = h E.

CHEMISTRY. Chapter 6 Electronic Structure of Atoms

The birth of atomic physics and quantum mechanics. Honors Physics Don Rhine

Planck s Quantum Hypothesis Blackbody Radiation

Atomic Theories Chapter 4.1. How do we know about atoms when no one has ever seen inside an atom?

Get out your diagram from your research paper. Get out a sheet of paper to take some notes on.

Honors Ch3 and Ch4. Atomic History and the Atom

Bellwork: 2/6/2013. atom is the. atom below. in an atom is found in the. mostly. 2. The smallest part of an. 1. Label the parts of the

democritus (~440 bc) who was he? theorized: A Greek philosopher

12/04/2012. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( )

Particle Theory of Matter. By the late 1700s, scientists had adopted the Particle Theory of Matter. This theory states that:

The Development of Atomic Theory

In many ways, Dalton's ideas are still useful today. For example, they help us to understand elements, compounds, and molecules.

Atomic Theory Development

Greek Philosophers (cont.)

UNIT 4 Electrons in Atoms. Advanced Chemistry 235 Lanphier High School Mr. David Peeler

Review Models of the Atom

Atomic Theory. Early models

Chapter 7: The Quantum-Mechanical Model of the Atom

Alan Mortimer PhD. Ideas of Modern Physics

Chapter 5: Electrons in Atoms

CHAPTER 27 Quantum Physics

Lecture 6 - Atomic Structure. Chem 103, Section F0F Unit II - Quantum Theory and Atomic Structure Lecture 6. Lecture 6 - Introduction

Democritus and Leucippus Matter is made up of indivisible particles Dalton - one type of atom for each element. Greek Idea

Historical Background of Quantum Mechanics

Quantum Physics and Atomic Models Chapter Questions. 1. How was it determined that cathode rays possessed a negative charge?

Early Atomic Theories and the Origins of Quantum Theory. Chapter 3.1

Atomic Theory Timeline

Atomic Theory. Democritus to the Planetary Model

1. Based on Dalton s evidence, circle the drawing that demonstrates Dalton s model.

The Hydrogen Atom According to Bohr

The History of the Atom. How did we learn about the atom?

Chapter #1 - Atomic Structure

Energy levels and atomic structures lectures chapter one

Dalton Thompson Rutherford Bohr Modern Model ("Wave. Models of the Atom

Discovery of the Atomic Nucleus. Conceptual Physics 11 th Edition. Discovery of the Electron. Discovery of the Atomic Nucleus

Physical Electronics. First class (1)

Atomic Models. 1) Students will be able to describe the evolution of atomic models.

Atomic Theory. The History of Atomic Theory

H CHEM - WED, 9/7/16. Do Now Be ready for notes. Sigfig review problem. Agenda Atomic Theory. Homework. Error Analysis

Chapter 7 Atomic Structure -1 Quantum Model of Atom. Dr. Sapna Gupta

The Atom and Quantum Mechanics

Atomic Theory Timeline Project

Atomic Models. A model uses familiar ideas to explain unfamiliar facts observed in nature. A model can be changed as new information is collected.

Properties of Light. Arrangement of Electrons in Atoms. The Development of a New Atomic Model. Electromagnetic Radiation CHAPTER 4

9/23/2012. Democritus 400 B.C. Greek philosopher Proposed that all materials are made from atoms. Coined Greek word atmos, meaning indivisible.

Chapter 9: Electrons and the Periodic Table

PSI AP Physics How was it determined that cathode rays possessed a negative charge?

EARLY VIEWS: The Ancient Greeks

JJ Thomson Group 2 1. What are cathode rays? Cathode rays are a stream of electrons following through vacuum tube. Electrons

SCH4C Unit 1 Practice Quiz 2

UNIT 4 NOTES: ATOMIC THEORY & STRUCTURE

Physics 1C. Lecture 28D

Outline Chapter 9 The Atom Photons Photons The Photoelectron Effect Photons Photons

Quantum and Atomic Physics - Multiple Choice

Development of Atomic Theory Elements of chemistry- Atoms, the building blocks of matter Video

4/14/2015. Models of the Atom. Quantum Physics versus Classical Physics The Thirty-Year War ( ) Classical Model of Atom

Chapter 29 Atomic Physics. Looking Ahead. Slide 29-1

Chapter 5. Page 266, Quick Check

Chapter 27 Early Quantum Theory and Models of the Atom Discovery and Properties of the electron

Quantum Theory of the Atom

7.1 Development of a Modern Atomic Theory

Early Quantum Theory and Models of the Atom

CHEMISTRY Matter and Change

The Development of Atomic Theory

Surprise, surprise, surprise

DEMOCRITUS - A philosopher in the year 400 B.C. - He didn t do experiments and he wondered if atoms kept on being divided, that there would only be

An Introduction to Atomic Theory. VCE Chemistry Unit 1: The Big Ideas of Chemistry Area of Study 1 The Periodic Table

Modern Physics for Scientists and Engineers International Edition, 4th Edition

Atomic Theory. Past and Present: pieces of a puzzle

Physics. Light Quanta

Atomic Spectra. What does this have to do with atomic models?

Chapter 6 Electronic structure of atoms

Make sure this is handed in!

SNC1D CHEMISTRY 2/8/2013. ATOMS, ELEMENTS, & COMPOUNDS L Atomic Theory (P ) Atomic Theory. Atomic Theory

Chapter 7 Atomic Structure and Orbitals

From a visible light perspective, a body is black if it absorbs all light that strikes it in the visible part of the spectrum.

The origins of atomic theory

The History of Atomic Theory Chapter 3--Chemistry

CHAPTER 5 Electrons in Atoms

PROGRESSION OF THE ATOMIC MODEL

Physics: Quanta to Quarks Option (99.95 ATAR)

CHEMISTRY 11 UNIT REVIEW: ATOMIC THEORY & PERIODIC TRENDS

SNC1D1 History of the Atom

Electronic structure of atoms

THE NATURE OF THE ATOM. alpha particle source

Chapter 37 Early Quantum Theory and Models of the Atom. Copyright 2009 Pearson Education, Inc.

Atomic theory. Atoms: The Building Blocks of Matter

Atomic Structure. History of Atomic Theory

History of the Atomic Model

CHEMISTRY. Matter and Change. Table Of Contents. Section 4.1 Early Ideas About Matter. Unstable Nuclei and Radioactive Decay

The following is a quote by Democritus (c. 460 c. 370 bce). Paraphrase this quote in your own words in your science journal.

Physics 1C Lecture 29A. Finish off Ch. 28 Start Ch. 29

Quantum Mechanics. Physics April 2002 Lecture 9. Planck Bohr Schroedinger Heisenberg

Atomic Structure. Part 3: Wave-Mechanical Model of the Atom. Key Question: How does the wave mechanical model explain the location of electrons?

Transcription:

Introduction to Quantum Physics Early Atomic Physics

What is Quantum Physics Quantum Physics is a collection of laws which explain observations of the tiny building blocks of all matter. The world of the quantum must be able to explain the classical world that we live in. To understand the quantum world we need to understand one of the major building blocks ---- the atom

History of Atomic Structure The model of atomic structure has changed as observations have altered our perceptions Democrictus Dalton Thomson Rutherford. (The model is not complete)

Democritus Atoms (Greek for indivisible) are the smallest unit of matter Atoms share all of the properties of the macroscopic object Atoms are the smallest pieces of matter which still act as the material from which they come from

John Dalton First truly scientific theory of the atom (results discovered through experiments with marsh gases) Proof of early Greek model --- the atom is indivisible but with no internal structure Properties of matter come from the properties of the atom

But what about electricity?

J.J. Thomson Discoverer of the electron The atom consists of a positively charged substance (like pudding) containing negative charges (like the raisins in a plum pudding)

Rutherford 1909 Rutherford performs an experiment in which alpha particles (He nucleus) are fired towards a thin foil of gold

Rutherford Experimental observations indicated that the majority of the alpha particles passed straight through, with few being deflected at small angles and even fewer retro reflecting from the gold foil

Rutherford Observations indicate that the atom is mostly empty space with a dense, central, positively-charged structure at its center The electrons (discovered by Thomson) must therefore exist outside of this central nucleus. Orbiting around the nucleus as planets do the Sun.

Classical Model The Rutherford model of the atom became known as the classical model of the atom

Problem with the classical Model The Theory The electron has a negative charge and orbits about the central nucleus The central nucleus has a charge and therefore must also have a magnetic field Charged particles lose energy as they pass through a magnetic field According to classical electro-magnetic theory the electron should lose energy in its orbit.

Observations The atom is a stable structure consisting of sub atomic particles that do not normally decay in our life time. Because the observation does not match the theory. either classical physics is wrong OR the Rutherford model is wrong / incomplete

Which is easier to believe? Hundreds of years of Physics laws and theories are wrong. A relatively new model of our atom is wrong. Answer : Both classical physics and the Rutherford model have some minor problems.

Enter Niels Bohr Bohr succeeded in solving the problem with the classical model by uniting two disparate ideas : Planck s quanta and the hydrogen emission spectra

Max Planck Observed the temperatures of cannons as they were bored out The colour of the emitted radiation is related to the temperature of the cannon The expected peak intensity follow the Rayleigh-Jean law

Rayleigh-Jean Law

Ultraviolet Catastrophe The classical (Rayleigh-Jeans) model predicted a steady increase in Intensity well into the ultraviolet If the theory worked with the cannons then enough ultraviolet radiation would be emitted to destroy life.

Energy is not continuous Planck solved the catastrophe by reimagining Energy Energy is not a continuous stream but consists of chunks or discrete packets Energy is quantized (flows as quanta)

Planck did not initially believe in his findings Why would energy be quantized it is neither simple or beautiful Planck s findings were instrumental in the work for which Einstein won the Noble Prize in Physics Photoelectric Effect

Quanta of Energy Vibrating molecules can only vibrate with certain discrete amounts of energy Each quanta of energy can be determined by E = hf E is the energy of the Quanta (J or ev) f is the frequency of the vibration h is Planck s constant (6.626 x 10-34 Js)

Hydrogen emission spectra Bohr also received a clue from the emission spectra of the Hydrogen atom Again the classical model predicts that the atom should be able to radiate in an infinite range of wavelengths but observations indicate otherwise

Energy is quantized If the electron in the atom can only absorb or emit discrete quantities of energy (quanta) then the emission spectra makes sense By using Planck s hypothesis and the clues from the emission spectra of Hydrogen Bohr was able to mathematically explain the nature of the atom

Hydrogen emission spectra

Bohr s theory Bohr s theory was the first step in the Quantum revolution Postulate of Stationary States : the Hydrogen atom can exist, without radiating energy, in any one of a discrete set of orbits of fixed energy Frequency Postulate : the Hydrogen atom can emit or absorb a quantity of energy only when the electron changes from one stationary state into another. This amount can be calculated by E=hf

Question How does the concept of the quantization of energy circumvent the problem with the classical model?

The Atom so far. A central nucleus (of positive charge) is surrounded by negatively charged particles called electrons Electrons can only orbit in fixed distances from the nucleus because they can only gain / lose a quanta of energy This prevents the electron from falling into the nucleus

Problems with the Bohr model 1. The two postulates only work with the Hydrogen atom. When the model is applied to other atoms extra dimensions of space is required.

2. The works of Grimaldi have shown that electrons are capable of displaying an interference pattern. How could a particle do this? Both of these problems can be solved to create a new theory by applying the works of debroglie and Schrodinger.

Louis de Broglie First degree in History but applied for graduate work in Physics Doctoral thesis Recherches sur la théorie des quanta Work beyond the intellect of his professors Sent to Einstein who endorsed it fully

Matter Waves De Broglie proposed that all matter have both matter properties and wave properties. Start with the Einstein energy-matter equality E = mc 2 This energy is quantized according to Planck So E = hf = mc 2

hf = mc 2 hf = (mc)c mc is the momentum of the wave = p hf = pc v = fl hf = p(fl) h = pl So p = h / l

In short any piece of matter travelling at any speed can exhibit wave properties The effects for classical particles are too small to observe The electron is not only a particle but also displays wave nature Therefore the electron can diffract Light also displays both particle and wave nature

Bohr model revision #1 The atom consists of A massive positively charged central nucleus Negatively charged electrons which create standing waves of energy. These waves of energy can only vibrate / resonate at specific frequencies These frequencies determine the orbitals around the nucleus de Broglie matter waves do not solve the multi-dimensionality problem!

Enter Schrodinger Einstein given the task to apply the Bohr/de Broglie model to atoms other than Hydrogen Was too busy working on GUT so he passed the task on to his friend Erwin Schrodinger Schrodinger was an unpopular choice in that he was considered a failed Physicist!

Christmas holidays and New Years 1925-26 Schrodinger takes his mistress into the Alps on vacation It is here that he comes up with his wave equation for all matter This set of equations works for all atoms --- not just Hydrogen

The Schrodinger wave model

de Broglie s matter waves do not describe the physical location of the electrons around the nucleus The mathematics describes the probability of finding the electron in a given location of space Loss of determinism?!?!? All life is based on probability there are no definite knowns!

God does not play dice with the Universe

Implications of a Probabilistic Universe Quantum tunneling HUP Schrödinger's cat BEC Separation of classical world and quantum world

Quantum Tunneling Imagine that you have a single electron that you place into an electrical potential well. The electron requires an infinite amount of energy to climb out of the box. Where is the electron?

Now imagine that you leave the electron and return to it a few weeks later. Where is the electron now?

Classical Physics would tell us that the electron must always be in the electropotential well since it doesn t have enough energy to climb out Experimental evidence indicates that the electron will leak out over time!!! This is the process through which semiconductors work

The Schrodinger equation defining the position of the electron is both energy, and time dependent As time proceeds the probability of finding the electron in a set location begins to smear out over space. There is a probability that the electron can climb out of the electropotential well.

Heisenberg s Uncertainty Principle Two versions of HUP Uncertainty between knowing the momentum of an object and the exact position of an object Uncertainty between knowing the amount of energy a substance contains within a time interval of measurment

Momentum and position Imagine that we have a small sub atomic particle that we want to observe and record all possible data for. We start to attempt to measure the momentum of the object To measure the velocity (and therefore the momentum) we need to set up a set of timing gates

We can use low energy x-rays to record the passage of the sub atomic particle from one gate to the other This will allow us to measure the velocity and therefore the momentum The wavelength of the x-ray is too long at low energies so even though we can use it to measure the momentum we can not use it to determine the exact position.

We can increase the energy of the x-ray which results in a tighter wavelength This will allow us to know the exact location of our subatomic particle But the increase in energy imparts energy to our sub atomic particle changing it s motion direction. And therefore changing the momentum

So By measuring the momentum the exact position remains unknown By measuring the exact position we change the momentum We can not know the exact position and momentum at the same time. A similar uncertainty exists between energy and time

Schrodinger s Cat The macroscopic / classical physicists rebuttal to HUP Classical physicists refuse to believe that It is impossible to know everything about a system The act of observing a system changes the system... The act of experimentation destroys determinism