CIRCULAR MEASURE - SECTORS AND SEGMENTS

Similar documents
CIRCLE PROPERTIES M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

AREA RELATED TO CIRCLES

AREAS RELATED TO CIRCLES Introduction

"Full Coverage": Pythagoras Theorem

Chapter 5: Measurement of Circles

2012 GCSE Maths Tutor All Rights Reserved

Unit 3: Number, Algebra, Geometry 2

TRIGONOMETRIC RATIOS AND GRAPHS

UNIT 13 Areas: CSEC Revision Test

Maths Assessment Framework Year 10 Higher

AREAS RELATED TO CIRCLES

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Core Mathematics 2 Radian Measures

Park Forest Math Team. Meet #4. Geometry. Self-study Packet

CHAPTER 11 AREAS OF PLANE FIGURES

221 MATH REFRESHER session 3 SAT2015_P06.indd 221 4/23/14 11:39 AM

1. Draw and label a diagram to illustrate the property of a tangent to a circle.

No Calc. 1 p (seen anywhere) 1 p. 1 p. No Calc. (b) Find an expression for cos 140. (c) Find an expression for tan (a) (i) sin 140 = p A1 N1

10.5 Areas of Circles and Sectors

PhysicsAndMathsTutor.com

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

Chapter (Circle) * Circle - circle is locus of such points which are at equidistant from a fixed point in

"Full Coverage": Non-Right Angled Triangles

DEPARTMENT OF MATHEMATICS

Math 5 Trigonometry Review Sheet for Chapter 5

1. Town A is 48 km from town B and 32 km from town C as shown in the diagram. A 48km

Area Related to Circle Exercise 2

Downloaded from AREAS RELATED TO CIRCLES

Circle Theorems. Angles at the circumference are equal. The angle in a semi-circle is x The angle at the centre. Cyclic Quadrilateral

Topic 3 Review [82 marks]

Indicate whether the statement is true or false.

Skill 3: Multiplication of fractions and decimals. 3.5, 3 times; 1.2, 2.6 times; 4.2, 3.14 times;

Solutionbank C2 Edexcel Modular Mathematics for AS and A-Level

CIRCLES MODULE - 3 OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE. Circles. Geometry. Notes

Edexcel Mathematics Higher Tier, May 2009 (1380/4H) (Paper 4, calculator)

Section 3.2 Applications of Radian Measure

Practice Papers Set D Higher Tier A*

Class X Chapter 12 Areas Related to Circles Maths

10. Circles. Q 5 O is the centre of a circle of radius 5 cm. OP AB and OQ CD, AB CD, AB = 6 cm and CD = 8 cm. Determine PQ. Marks (2) Marks (2)

Math Multiple Choice Identify the choice that best completes the statement or answers the question.

Assignment Assigned Date Due Date Grade 6.7 Worksheet

The following document was developed by Learning Materials Production, OTEN, DET.

Introduction Circle Some terms related with a circle

Mathematics Paper 2 (Calculator)

Trigonometry. Sin θ Cos θ Tan θ Cot θ Sec θ Cosec θ. Sin = = cos = = tan = = cosec = sec = 1. cot = sin. cos. tan

CIRCLES, CHORDS AND TANGENTS

Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at 4H June 2017.

CN#5 Objectives 5/11/ I will be able to describe the effect on perimeter and area when one or more dimensions of a figure are changed.

JUST THE MATHS SLIDES NUMBER 3.1. TRIGONOMETRY 1 (Angles & trigonometric functions) A.J.Hobson

Mathematics B Unit 3: Number, Algebra, Geometry 2 (Calculator)

Chapter 8 Solids. Pyramids. This is a square pyramid. Draw this figure and write names of edges. Height and Slant Height.

QUADRATIC EQUATIONS M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

2. Find the side lengths of a square whose diagonal is length State the side ratios of the special right triangles, and

I.G.C.S.E. Area. You can access the solutions from the end of each question

Grade 9 Circles. Answer the questions. For more such worksheets visit

Angles and Transformations - Ms Buerckner

COMMON UNITS OF PERIMITER ARE METRE

SEQUENCES M.K. HOME TUITION. Mathematics Revision Guides Level: GCSE Higher Tier

Integrated Math II. IM2.1.2 Interpret given situations as functions in graphs, formulas, and words.

The shaded shape has an area of 3 hexagons and a perimeter of 14 cm.

(b) Show that sin 2 =. 9 (c) Find the exact value of cos 2. (Total 6 marks)

SIMULTANEOUS EQUATIONS

Trigonometry - Part 1 (12 pages; 4/9/16) fmng.uk

National 5 Portfolio EF1.4 - Gradient, Sectors, Volumes and Significant Figures

Wednesday 15 January 2014 Morning Time: 2 hours

Solve problems involving tangents to a circle. Solve problems involving chords of a circle

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

MATHEMATICS. IMPORTANT FORMULAE AND CONCEPTS for. Summative Assessment -II. Revision CLASS X Prepared by

Math 9 Unit 8: Circle Geometry Pre-Exam Practice

Mathematics. Caringbah High School. Trial HSC Examination. Total Marks 100. General Instructions

ANSWERS. 1. (a) l = rθ or ACB = 2 OA (M1) = 30 cm (A1) (C2) (b) AÔB (obtuse) = 2π 2 (A1) 1. Area = θ r 2 1. = (2π 2)(15) 2 (M1)(A1)

Olympiad M aclaurin Paper

Paper Reference H. 1380/4H Edexcel GCSE Mathematics (Linear) 1380 Paper 4 (Calculator) Friday 11 June 2010 Morning Time: 1 hour 45 minutes

Bella invests in a savings account for three years. The account pays 2.5% compound interest per annum.

Ch 10 Review. Multiple Choice Identify the choice that best completes the statement or answers the question.

If x = 180 then the arc subtended by x is a semicircle which we know has length πr. Now we argue that:

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Topic Learning Outcomes Suggested Teaching Activities Resources On-Line Resources

Circular Functions and Trig - Practice Problems (to 07)

You must have: Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser, calculator. Tracing paper may be used.

S4 National 5 Write-On Homework Sheets

GCSE Mathematics Calculator Higher Tier Free Practice Set 5 1 hour 45 minutes ANSWERS. Marks shown in brackets for each question (2)

LAMC Intermediate I & II March 1, Oleg Gleizer. A natural unit of measuring angles, a radian

Paper Reference. Mathematics A Paper 5 (Non-Calculator) Tuesday 7 November 2006 Morning Time: 2 hours

+ 2gx + 2fy + c = 0 if S

Side c is called the hypotenuse. Side a, and side b, are the other 2 sides.

ARCS An ARC is any unbroken part of the circumference of a circle. It is named using its ENDPOINTS.

Lesson 2B: Thales Theorem

The Not-Formula Book for C2 Everything you need to know for Core 2 that won t be in the formula book Examination Board: AQA

The Grade Descriptors below are used to assess work and student progress in Mathematics from Year 7 to

Section 4.2: Radians, Arc Length, and the Area of a Sector

1. Trigonometry.notebook. September 29, Trigonometry. hypotenuse opposite. Recall: adjacent

Mathematics 5 SN TRIGONOMETRY PROBLEMS 2., which one of the following statements is TRUE?, which one of the following statements is TRUE?

Chapter 8. Chapter 8 Opener. Section 8.1. Big Ideas Math Red Accelerated Worked-Out Solutions 4 7 = = 4 49 = = 39 = = 3 81 = 243

Mathematics Higher Tier, June /2H (Paper 2, calculator)

4 The Trigonometric Functions

Chapter 7 Sect. 2. A pythagorean triple is a set of three nonzero whole numbers a, b, and c, that satisfy the equation a 2 + b 2 = c 2.

Paper Reference. Ruler graduated in centimetres and millimetres, protractor, compasses, pen, HB pencil, eraser. Tracing paper may be used.

Measurement Year 11. Rounding

HIGHER MATHS REVISION CHECKLIST (Grades 9 4)

Transcription:

Mathematics Revision Guides Circular Measure Page 1 of M.K. HOME TUITION Mathematics Revision Guides Level: GCSE Higher Tier CIRCULAR MEASURE - SECTORS AND SEGMENTS Version: 3. Date: -10-014

Mathematics Revision Guides Circular Measure Page of CIRCULAR MEASURE Recall the following formulae: Area of a circle is A = r where r is the radius. Circumference of a circle is C = r where r is the radius (or d where d is the diameter). For revision of simpler examples, check out Circles on the Foundation Tier study notes. Example (1): A bicycle has a rev counter on its front wheel counting the number of revolutions made from a starting point. A cyclist resets the rev counter to zero before a trial race of 4km. The rev counter reads 15 at the end of the trial. What is the diameter of the front cycle wheel? (Use the key on your calculator). Here, 15 revolutions = 4000m, so one revolution = 1 circumference = 4000 15 m or.160m Diameter of wheel =.160 m = 0.67m = 69cm to nearest cm. Example (): A circular ornamental lake in a park has a diameter of 3m. Work out its area, using the key on your calculator. We are given the diameter here, so we need to halve it first to obtain the radius, namely 19m. The area is r, or 19, or 361m or 1130 m to 3 s.f. Example (3): The park authorities in Example () have decided to lay a gravelled path metres wide all around the circumference of the lake. i) Show that the total area of the gravelled path is 0 square metres. ii) Given that the depth of gravel in the path is 10 cm, and that the material and labour costs are 179 per cubic metre, what is the cost of laying the path? (Use exact amounts, without rounding to the nearest cubic metre above. Give the answer to the nearest.) i) The area of the lake is 361m from the previous question. Adding the width of the path to the lake s radius, we have a larger circle with a radius of 1 m. The area of this larger circle is 1, or 441m, so, by subtraction, the area of the path is (441 361) m, or 0 m. Hint: Whenever a circle of radius r is entirely inside a larger circle of radius R, the area of the ring so formed is R r ). ii) If the depth of gravel in the path is 10 cm, or 0.1 m, then the volume of gravel used is 0 0.1 m 3 or m 3. The cost of laying the gravel path is (179 ) = 4499.

Mathematics Revision Guides Circular Measure Page 3 of Areas and arc lengths of sectors and segments. Recall the definitions of a sector and a segment. The sector. A sector is a part of a circle bounded by two radii and an arc. In the diagram, OA and OB are radii and AB is the corresponding arc. The shaded region is the sector AOB. In addition, the region is a minor sector because its area is less than half that of the circle, and the clockwise arc AB is a minor arc. The unshaded region is a major sector since its area is more than half that of the circle, and the anticlockwise arc AB is a major arc. A whole circle can be said to be a sector with an angle of, and its area is A = r. It can be seen that if a sector has an angle, this angle is of a circle. We can therefore find the area of the sector by multiplying the area of the circle by. The area of a sector of angle and radius r is therefore r. Similarly, the arc length of a sector can be obtained from the formula for the circumference and multiplying it by. arc length of a sector of angle and radius r is given by ( r ) r. 10 Example (4): Find the area of a 54 sector of a circle of radius 35 cm. We substitute = 54 and r = 35 cm into the formula 15 54 cm or 577cm. r to obtain an area of the sector of

Mathematics Revision Guides Circular Measure Page 4 of Example (5): A semicircular table top has a straight edge of 1.6 m. Calculate its area and perimeter, giving answers to 3 significant figures. A semicircle can be said to be a sector whose angle is 10, or half a circle, so the formula for the area simplifies to r and, for the arc length, r. The straight edge of the table top is its diameter, so the radius is 0.63 m. The area is r = (0.63 ) = 0.63 m. The perimeter is r + r = (0.63+ 1.6) m = 3.4 m. Example (6): A school s playing field has the following plan, where the section in the top right-hand corner is a quarter-circle. Find its area to the nearest square metre and perimeter to the nearest metre. The playing field is basically a rectangle measuring 60 m by 50 m, but with a square of side 0 m removed and replaced with a quarter-circle of radius 0 m. A quarter-circle is a sector whose angle is 90, so its simplified area formula is r 4 and, for the arc length, r. Therefore, area of original rectangle = 60 m 50 m = 3000 m. Area of square (to be subtracted) = 0 m = 400 m. Area of quarter-circle (to be added) = (0) 4 = 100 m = 314 m. Hence the area of the playing field = (3000 400 + 314) m = 914 m. The straight line sections of the playing field total 60 + 50 + (60 0) + (50 0) m, or 10 m. r The quarter-circular arc is = 10 m, or 31 m to the nearest metre. The perimeter of the playing field is 10 + 31 = 11 m. Example (7): An enclosure is in the shape of a 7 sector of a circle of radius 0m. Find the cost of fencing the enclosure, where fencing costs 16 per metre. We need to find the perimeter here; it is twice the radius plus the arc length. The arc length is 0 7 m or 100.5m. 10 Twice the radius is 160m, so the perimeter is 61m to the next metre above. The cost of fencing the enclosure is 16 61, or 4176.

Mathematics Revision Guides Circular Measure Page 5 of Example (): The piece of plastic shown on the right is shaped to form a lampshade by connecting point A to A and B to B. It consists of a 5 sector of a circle with a smaller sector removed. The distance from the centre of the sector O to the inside of the plastic piece A is cm; also, the distance AB from the inside to the outside of the piece is 16 cm. Calculate, to the nearest square centimetre, the area of the piece of plastic needed to make the lampshade. The area of a sector is given by is the radius and is the angle. r where r The area of the plastic is that of the sector of radius OA subtracted from that of the sector of radius OB. Let R be the radius OB of the larger sector : it is ( + 16) cm, or 4 cm. Let r be the radius OA of the smaller sector (to be subtracted) : it is cm. The angle is 5, so 5 5, i.e. the sector is equivalent to 5 of a circle. The area of the difference, i.e. that of the plastic piece, is R r. (See Example (3) for a similar case.) R - r or, more concisely, Substituting for R, r and, the area of the plastic is 5 5 51 4 576 64 30 5 cm, or 1005 cm.

Mathematics Revision Guides Circular Measure Page 6 of The segment. A segment is a part of a circle bounded by a chord and an arc. In the diagram, the line AB is the chord, and the curve AB is the corresponding arc. (The chord is not a diameter, since it does not pass through the centre O.) The shaded region is the segment A, and it is a minor segment because its area is less than half that of the circle. Conversely, the unshaded region is a major segment since its area is more than half that of the circle. Finding the area and arc length of a segment. Segments are a little more awkward to work with than sectors, usually requiring the use of trig. Example (9): Find the perimeter and area of the segment shown. We are given the length of the chord AB and the radius, but not the angle AOB. To find this angle, we need to construct the isosceles triangle AOB and use trig methods. The midpoint M of the chord AB divides the isosceles triangle AOB into two congruent right-angled triangles AMO and BMO. AM 4 Using trig, sin AOM, giving AOM = 53.1. OA 5 Since AOM = BOM, AOB = ( AOM) = 106.3. The length of arc AB is therefore 5106.3 cm or 9.3 cm, 10 hence the perimeter of the segment is + 9.3 cm, or 17.3 cm.

Mathematics Revision Guides Circular Measure Page 7 of The best way of working out the area of a segment is to treat it as a sector with a triangle removed. To find the area of the triangle AOB, we know that the base AB = cm, but we need to find the height OM. For that, we use Pythagoras on the triangle AMO, whereby (OM) = (AO) - (AM), giving OM = 3 cm. The area of triangle AMO is ½ 3, or 1 cm. From the earlier result, the area of the sector AOB is r or Therefore: 5106.6 cm or 3. cm. Area of sector = 3. cm Area of isosceles triangle = 1.0cm Area of segment by subtraction = 11. cm.

Mathematics Revision Guides Circular Measure Page of Example (10): Find the area and perimeter of the segment shown on the right. The example is considerably simpler than the previous one as we are already given the angle subtended by the segment. The area of the sector can be worked out at once as r = 649 cm or 54.7 cm. To find the area of the isosceles triangle, we recall the formula A = ½ab sin C, where a and b are two sides and C the included angle. The two sides are both radii at cm and the included angle is 9, so the area of the triangle is ½ sin 9 cm, or 31.7 cm. The area of the segment (by subtraction) = (54.7 31.7) cm = 3.0 cm. Finding the perimeter is a little more tricky. r The length of the arc is easy enough to find, it is or 10 5 9 cm, or.55cm. 10 We need to use trig to find the length of the chord AB. The isosceles triangle AOB can be split into two rightangled ones, where M is the midpoint of the chord AB. The length of the half-chord AM = sin 49 by trig, The full chord AB is therefore 16 sin 49 cm or 1.0 cm. If a chord subtends an angle at the centre, its length is given by r (sin ½) where r is the radius of the circle. (Or, to find the length of a chord, find the sine of half the subtended angle, and multiply it by twice the radius.) The perimeter of the segment is therefore (.55 + 1.0) cm, or 0.6 cm. (We could also have found the length of the chord c by applying a modified form of the cosine formula to the isosceles triangle, where r = and C = 9. c a b abcos C Because a and b are both radii, we can simplify the formula to c r (1 cos C ). c 1(1 cos9) = 145. c = 1.0 cm. ) c r r cos C