How Cold is Freezing?

Similar documents
Freezing Point Depression: Can oceans freeze? Teacher Advanced Version

SOLUTIONS. Chapter Test B. A. Matching. Column A. Column B. Name Date Class. 418 Core Teaching Resources

Honors Chemistry Unit 4 Exam Study Guide Solutions, Equilibrium & Reaction Rates

Chapter 13. Ions in aqueous Solutions And Colligative Properties

UNIT 12 Solutions. Homework. CRHS Academic Chemistry. Due Date Assignment On-Time (100) Late (70) Warm-Up

COLLIGATIVE PROPERTIES OF SOLUTIONS

Let's look at the following "reaction" Mixtures. water + salt > "salt water"

Mixtures. What happens to the properties (phase changes) when we make a solution? Principles of Chemistry II. Vanden Bout

2 How Substances Dissolve

Soluble: A solute that dissolves in a specific solvent. Insoluble: A solute that will not dissolve in a specific solvent. "Like Dissolves Like"

Chapter 5, Lesson 5 Using Dissolving to Identify an Unknown

2 How Substances Dissolve

StudyHub: AP Chemistry

SOLUTION CONCENTRATIONS

Name Date Class PROPERTIES OF SOLUTIONS

Stoichiometry & Chemical Reactions

DATE: POGIL: Colligative Properties Part 2

4/21/2015. But what about freezing? When water freezes, it has to form a crystal lattice.

Name Date Period Unit 8 Review

Experiment 1 Molecular Weight Determination from Freezing Point Depression

Lesson Plans Chapter 15: Solutions & Solution Chemistry

LESSON 11. Glossary: Solutions. Boiling-point elevation

KEMS448 Physical Chemistry Advanced Laboratory Work. Freezing Point Depression

Exp 02 - Freezing Point

icbse.com CERTIFICATE

10) On a solubility curve, the points on the curve indicate a solution. 11) Values on the graph a curve represent unsaturated solutions.

OPEN LESSON SAMPLE LESSONS FOR THE CLASSROOM FROM LAYING THE FOUNDATION

Give 6 different types of solutions, with an example of each.

Properties of Solutions

Solution formation. The nature (polarity, or composition) of the solute and the solvent will determine. Factors determining rate of solution...

Milwaukie HS Chemistry Linman. Period Date / /

Use the Equations given in your notes to solve the Colligative Property Questions. Freezing Boiling Point ( C)

Today is Wednesday, January 10 th, 2018

Warm up. 1. What is a solution? 2. What is a solute? 3. What is a solvent?

Salting The Roads Colligative Property. B. Types. A. Definition

Solutions CHAPTER Solution Formation. Ch.16 Notes with notations. April 17, 2018

Chapter 13. Characteristics of a Solution. Example of A Homogenous Mixtures. Solutions

Unit - 2 SOLUTIONS VSA QUESTIONS (1 - MARK QUESTIONS) 1. Give an example of liquid in solid type solution.

Chapter 6, Lesson 9: Neutralizing Acids and Bases

6th Grade: Great Salt Lake is Salty

Concentration of Solutions

Unit 7. Solution Concentrations and Colligative Properties

ALE 24. Colligative Properties (Part 2)

B. Types. Salting The Roads. A. Definition 4/21/2015. Unit 11: Solutions Lesson 11.3: Colligative Properties 68. Colligative Property

Regents Chemistry Unit 3C Solutions Text Chapter 13 Reference Tables F, G & T. Chemists have Solutions!

Lab 3: Determination of molar mass by freezing point depression

EXPERIMENT #4 Freezing Points, Cooling Curves, and Molar Mass Determination

Chemistry. Approximate Timeline. Students are expected to keep up with class work when absent.

HONORS CHEMISTRY 1. Name: Mods: Chemistry Work - Solutions

Colligative Properties

Water & Solutions Chapter 17 & 18 Assignment & Problem Set

Physical Pharmacy. Solutions. Khalid T Maaroof MSc. Pharmaceutical sciences School of pharmacy Pharmaceutics department

Chapter 10: CHM 2045 (Dr. Capps)

ESSENTIAL EXPERIMENTS CHEMISTRY

1. stirring (agitation) 2. temperature 3. the surface area of the dissolving particles

Activity Sheet Transferring thermal energy by dissolving salts

1.22 Concentration of Solutions

Solvation and Freezing Point Depression

Chapter 12.4 Colligative Properties of Solutions Objectives List and define the colligative properties of solutions. Relate the values of colligative

Applications in Forensic Science. T. Trimpe

Physical Properties of Solutions

CHM Colligative properties (r15) Charles Taylor 1/6

CP Chapter 15/16 Solutions What Are Solutions?

Mixtures. Chapters 12/13: Solutions and Colligative Properties. Types of Solutions. Suspensions. The Tyndall Effect: Colloid

Physical Properties of Solutions

Mixtures and substances Investigating mixtures and substances

Week 14/Tu: Lecture Units 33 & 34

concentration of solute (molality) Freezing point depression constant (for SOLVENT)

Chapter 11: Properties of Solutions

Solutions Colligative Properties

Review questions/problems for Solutions Unit Chapter 12 and 13

Additional Chapter 7 Homework Problems: Due with chapter 7 homework, show your work for full credit!

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

Homework 02. Colligative Properties and Solubility Equilibria

2 Copyright Pearson Education, Inc., or its affiliates. All Rights Reserved.

Investigation 2. Physical properties and physical change in solids. How can you tell if crystals that look the same are really the same or different?

Chemistry. TOPIC : Solution and colligative properties

The Hand Warmer Design Challenge: Where Does the Heat Come From?

Solutions. Definitions. Some Definitions. Page 1. Parts of a Solution

Name AP CHEM / / Chapter 11 Outline Properties of Solutions

Lecture 31: Solutions 5

PREPARE FOR THE ACTIVITY. Activity Sheet Chapter 6, Lesson 8 ph and Color Change

2/22/2019 NEW UNIT! Chemical Interactions. Atomic Basics #19

Colligative Properties

Ways of Expressing Concentrations of Solutions. Solutions

Slide 1. Slide 2. Slide 3. Colligative Properties. Compounds in Aqueous Solution. Rules for Net Ionic Equations. Rule

- Applications: In chemistry, this effect is often used to determine the molecular weight of an unknown molecule.

100 C = 100 X = X = 218 g will fit in this solution. 25 C = 100 X = 3640 X = 36.4 g will fit in this solution.

UNIT 2 SOLUTION. Q. 1. The vapour pressure of deliquescent substance is less or more than that of water vapours in air?

2. If a gas is released in a reaction (ex: Hydrogen gas bubbles off), is it written as a reactant or a product?

x =!b ± b2! 4ac 2a moles particles solution (expt) moles solute dissolved (calculated conc ) i =

DATE: POGIL: Colligative Properties Part 1

64 previous solution

Colligative Properties

Chemistry Assessment: #3 Part 1 Solubility and Colligative Properties

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

H 2 O WHAT PROPERTIES OF WATER MAKE IT ESSENTIAL TO LIFE OF EARTH? Good solvent High Surface tension Low vapor pressure High boiling point

Colligative Properties

Do Now March 27, 2017

Saturday, February 20, Solutions

Transcription:

Details Completion About one period Permission: Download, Share, and Remix How Cold is Freezing? Overview How can the ocean be colder than 0 C, the temperature at which water freezes? As it turns out, the concentration of the particles (in this case, the ions from the salt) in ocean water lowers the temperature at which the saltwater will freeze. Students will learn how ocean water freezes at a lower temperature than freshwater by conducting an experiment to determine the temperature of a freezer. This experiment can be performed in the classroom or at home by students in honors and AP level chemistry or can be easily modified to use in any physical science class. Objectives Students will learn: To make saltwater (NaCl) solutions of varying concentrations, including how to calculate the molality of the solution. To determine the freezing point depression of the saltwater solutions. To estimate the temperature of a freezer by observing the behavior of various concentrations of saltwater. Materials Table salt, NaCl Water Fork or many toothpicks Kitchen measures: 1 cup, 1/4 cup, 1 tablespoon, 1 teaspoon OR graduated cylinders (recall that 1000 ml of water = 1 kg of water) and a balance. Ice cube tray with 5 or more cube slots OR 5 small (3 oz.) bathroom cups Household freezer Four household glasses larger than one cup Masking tape and a marker Lesson Preparation The concept of the freezing point depression of saltwater is a perfect application of colligative properties and can be used as an opportunity to introduce students to the extremely cold environment of arctic and antarctic ocean waters. According to NOAA, arctic ocean water freezes at -1.9 C (http://oceanservice.noaa.gov/ facts/oceanfreeze.html) due to the salt dissolved in it. More concentrated saltwater bodies of water (such as the Great Salt Lake in Utah) would require even colder temperatures to freeze. If you are teaching an advanced chemistry class, prior to this experiment, the background chemistry concepts (see attached) should be covered for your students to http://www.polartrec.com/learning-resources 1

How Cold is Freezing? perform the calculations for determining the freezing point depression of saltwater solution. If you are teaching an earlier level science class, refer to the Freezing Temperatures for the Various Saltwater Solutions chart (see attached background chemistry information) to determine the freezing point of each of the successively more dilute saltwater solutions obtained in the procedure. Your students can skip Procedural steps 7 & 8. Procedure 1. Using masking tape, label the four household glasses A, B, C, and D. Save these for step 3. 2. Dissolve one tablespoon (20 g) of table salt in exactly ¼ cup (59 ml = 0.059 kg) of tap water in each of the glasses labeled A, B, C, and D. Stir very well. 3. Set glass A aside. Glass A now contains 20 g NaCl and 0.059 kg of water. 4. Dilute the solution in glass B with an additional 0.104 cups of water (1 tablespoon and 2 teaspoons). Stir well. Glass B now contains 20 g NaCl and 0.084 kg of water. 5. Dilute the solution in glass C with an additional 0.25 cups of water (1/4 cup). Stir well. Glass C now contains 20 g NaCl and 0.118 kg of water. 6. Dilute the solution in glass D with an additional 0.75 cups of water (3/4 cup). Stir well. Glass D now contains 20 g NaCl and 0.236 kg of water. 7. Calculate the molality, m, of each of the saltwater solutions in glasses A, B, C, and D using the formula: molality, m = # of moles NaCl / # of kg water 8. Calculate the freezing point depression of the saltwater solutions in glasses A, B, C, and D using the formula: T = - (Kf) (m) (i) = (1.86)(m)(2). This is also the freezing point of the saltwater solution in C. If you wish to see this freezing point in F, convert using the formula: F = (1.8* C) + 32. 9. With masking tape, label five of the cube slots of the ice cube tray (or the 5 small bathroom cups) as follows A, B, C, D, and Control. 10. Pour equal amounts of the solutions from each of the labeled glasses into the appropriate ice cube slot (or small cup). Do not fill these above 2/3 full. Into the Control ice cube slot (or small cup), add tap water. 11. Place the ice cube tray (or small cups) into the freezer in an area that can be easily observed. Be careful not to mix or spill the solutions. 12. Every 30 minutes for 3 hours, observe the freezing process. Use a fork (or toothpick) to determine the state of each solution. Rinse the fork between testing each sample. Do not crosscontaminate the solutions with the fork. Record the state of each solution at every observation time. Extension Students could research the freezing temperatures of saltwater bodies near them or of how some animals and insects use this freezing point depression to keep their blood from freezing in very cold temperatures. Resources http://www.polartrec.com/learning-resources 2

How Cold is Freezing? n/a Assessment The teacher can use the student lab report to assess student understanding. Credits This is an original lesson by Mark Paricio, mparicio@cherrycreekschools.org, adapted from his original take-home-experiment: How Cold is my Freezer? http://www.polartrec.com/learning-resources 3

How Cold is Freezing? National Science Education Standards (NSES): Content Standards, Grades 9-12 Content Standard A: Science As Inquiry a. Abilities necessary to do scientific inquiry Content Standard B: Physical Science a. Structure of atoms b. Structure and properties of matter c. Chemical reactions Other Standards Colorado Science Standards: 2. Matter has definite structure that determines characteristic physical and chemical properties Students can: b. Gather, analyze and interpret data on chemical and physical properties of elements such as density, melting point, boiling point, and conductivity (DOK 1-2). http://www.polartrec.com/learning-resources 4

Background Chemistry Concepts for NaCl-water solutions: Molality is the number of moles of the solute, NaCl /1 kg of the solvent, H 2 O. m = moles NaCl / 1 kg H 2 O 1 tablespoon of table salt is approximately 20 grams of NaCl. The molar mass of NaCl = 23.0 (for Na) + 35.5 (for Cl) = 58.5 g/mole NaCl 1 cup of water is 237 grams of H 2 O. The temperature depression, T, of the normal freezing point of a solvent containing a solute with particles or ions in molal concentration, m, is given by the equation: T = - (K f ) (m) (i) = the freezing point of the solution in C where: K f is the cryoscopic constant specific to the solvent. For water, K f = 1.86 C/m. m is the molality concentration of the solvent in the solution. i is the van t Hoff factor and equals the number of ions or particles per individual formula unit of solute. For NaCl, i = 2; for MgCl 3, i = 3. Freezing Temperatures for the Various Saltwater Solutions Solution NaCl (tbsp.) NaCl (g) NaCl (moles) Water (kg) Water (ml) Water (cups) molality (m) Freezing Pt ( C) Freezing Pt ( F) A 1 20 0.34 0.059 59 0.25 5.76-21 -7 B 1 20 0.34 0.084 84 0.35 4.05-17 2 C 1 20 0.34 0.118 118 0.50 2.88-11 13 D 1 20 0.34 0.236 236 1.00 1.44-5.4 22.

Solution A B C D E Observations of Solutions at Various Time in the Freezer 0:00 0.30 1:00 1:30 2:00 2:30 3:00 Questions: 1. Based on your observations and your answers to calculation step 3, give a range of the approximate temperature of your freezer. Explain your reasoning. 2. Does tap water (or freshwater) really freeze at 0 C? Why or Why not? 3. The maximum solubility of table salt, NaCl (i =2) in water at 0 C is 35.7 g NaCl / 100 g H 2 O. a. Calculate the maximum molality of a NaCl solution in water at 0 C b. Calculate the maximum freezing point depression for this NaCl solution. 4. The maximum solubility of the sugar sucrose, C 12 H 22 O 11, in water at 0 C is 180 g C 12 H 22 O 11 / 100 g H 2 O, a value much higher than that for NaCl. However, sucrose is NOT an electrolyte like NaCl (so i =1). a. Calculate the maximum molality of a C 12 H 22 O 11 solution in water at 0 C b. Calculate the maximum freezing point depression for this C 12 H 22 O 11 solution. 5. The maximum solubility of the salt magnesium chloride, MgCl 2 (i =3) in water at 0 C is 52.9 g NaCl / 100 g H 2 O. a. Calculate the maximum molality of a NaCl solution in water at 0 C b. Calculate the maximum freezing point depression for this NaCl solution. 6. Graph the molarity of each solution (x-axis) versus the calculated freezing point ( C) of each solution. If ocean water freezes at -1.9 C, determine the approximate molality of the ocean, assuming it is primarily a NaCl solution. 7. Why is MgCl 2 used on highways when the temperature reaches freezing at 0 C? At what temperature should the highway department stop using NaCl? How might the highway department keep the roads from freezing even below the temperature you mentioned? What might be a side effect of using either NaCl or MgCl 2 on the roads?