Multiplicative Versions of Infinitesimal Calculus

Similar documents
Limit of a function:

Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Numerical Integration

Approximate Integration

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

Math1242 Project I (TI 84) Name:

Simpson s 1/3 rd Rule of Integration

the midpoint of the ith subinterval, and n is even for

Crushed Notes on MATH132: Calculus

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Chapter 7 Infinite Series

1 Section 8.1: Sequences. 2 Section 8.2: Innite Series. 1.1 Limit Rules. 1.2 Common Sequence Limits. 2.1 Denition. 2.

Theorem 5.3 (Continued) The Fundamental Theorem of Calculus, Part 2: ab,, then. f x dx F x F b F a. a a. f x dx= f x x

Calculus II Homework: The Integral Test and Estimation of Sums Page 1

Pre-Calculus - Chapter 3 Sections Notes

f(t)dt 2δ f(x) f(t)dt 0 and b f(t)dt = 0 gives F (b) = 0. Since F is increasing, this means that

1 Tangent Line Problem

Important Facts You Need To Know/Review:

The Reimann Integral is a formal limit definition of a definite integral

Numerical Methods. Lecture 5. Numerical integration. dr hab. inż. Katarzyna Zakrzewska, prof. AGH. Numerical Methods lecture 5 1

Convergence rates of approximate sums of Riemann integrals

Infinite Series Sequences: terms nth term Listing Terms of a Sequence 2 n recursively defined n+1 Pattern Recognition for Sequences Ex:

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

Section 6.3: Geometric Sequences

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

Second Mean Value Theorem for Integrals By Ng Tze Beng. The Second Mean Value Theorem for Integrals (SMVT) Statement of the Theorem

REVIEW OF CHAPTER 5 MATH 114 (SECTION C1): ELEMENTARY CALCULUS

General properties of definite integrals

B. Examples 1. Finite Sums finite sums are an example of Riemann Sums in which each subinterval has the same length and the same x i

Area, Volume, Rotations, Newton s Method

( ) dx ; f ( x ) is height and Δx is

f ( x) ( ) dx =

Interpolation. 1. What is interpolation?

4. When is the particle speeding up? Why? 5. When is the particle slowing down? Why?

Mathematical Notation Math Calculus & Analytic Geometry I

POWER SERIES R. E. SHOWALTER

n 2 + 3n + 1 4n = n2 + 3n + 1 n n 2 = n + 1

AP Calculus Notes: Unit 6 Definite Integrals. Syllabus Objective: 3.4 The student will approximate a definite integral using rectangles.

5.3. The Definite Integral. Limits of Riemann Sums

Limits and an Introduction to Calculus

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

Riemann Integral and Bounded function. Ng Tze Beng

FACULTY OF MATHEMATICAL STUDIES MATHEMATICS FOR PART I ENGINEERING. Lectures

INTEGRATION TECHNIQUES (TRIG, LOG, EXP FUNCTIONS)

Multiplication and Translation Operators on the Fock Spaces for the q-modified Bessel Function *

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Options: Calculus. O C.1 PG #2, 3b, 4, 5ace O C.2 PG.24 #1 O D PG.28 #2, 3, 4, 5, 7 O E PG #1, 3, 4, 5 O F PG.

Mathematical Notation Math Calculus & Analytic Geometry I

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

BC Calculus Review Sheet

( ) = A n + B ( ) + Bn

Orthogonal functions - Function Approximation

Topic 4 Fourier Series. Today

f(x) is a function of x and it is defined on the set R of real numbers. If then f(x) is continuous at x=x 0, where x 0 R.

EVALUATING DEFINITE INTEGRALS

Homework 2 solutions

Calculus Summary Sheet

Feedback & Assessment of Your Success. 1 Calculus AP U5 Integration (AP) Name: Antiderivatives & Indefinite Integration (AP) Journal #1 3days

1.3 Continuous Functions and Riemann Sums

Module 4. Signal Representation and Baseband Processing. Version 2 ECE IIT, Kharagpur

Approximations of Definite Integrals

( ) k ( ) 1 T n 1 x = xk. Geometric series obtained directly from the definition. = 1 1 x. See also Scalars 9.1 ADV-1: lim n.

8.1 Arc Length. What is the length of a curve? How can we approximate it? We could do it following the pattern we ve used before

Fig. 1. I a. V ag I c. I n. V cg. Z n Z Y. I b. V bg

Project 3: Using Identities to Rewrite Expressions

Sequence and Series of Functions

Add Maths Formulae List: Form 4 (Update 18/9/08)

* power rule: * fraction raised to negative exponent: * expanded power rule:

9.5. Alternating series. Absolute convergence and conditional convergence

Relation of BSTs to Quicksort, Analysis of Random BST. Lecture 9

GRAPHING LINEAR EQUATIONS. Linear Equations. x l ( 3,1 ) _x-axis. Origin ( 0, 0 ) Slope = change in y change in x. Equation for l 1.

10. 3 The Integral and Comparison Test, Estimating Sums

Definite Integral. The Left and Right Sums

Frequency-domain Characteristics of Discrete-time LTI Systems

Linford 1. Kyle Linford. Math 211. Honors Project. Theorems to Analyze: Theorem 2.4 The Limit of a Function Involving a Radical (A4)

1.1 The FTC and Riemann Sums. An Application of Definite Integrals: Net Distance Travelled

UNIVERSITY OF BRISTOL. Examination for the Degrees of B.Sc. and M.Sci. (Level C/4) ANALYSIS 1B, SOLUTIONS MATH (Paper Code MATH-10006)

THE NATIONAL UNIVERSITY OF IRELAND, CORK COLÁISTE NA hollscoile, CORCAIGH UNIVERSITY COLLEGE, CORK SUMMER EXAMINATION 2005 FIRST ENGINEERING

Math 3B Midterm Review

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

We saw in Section 5.1 that a limit of the form. 2 DEFINITION OF A DEFINITE INTEGRAL If f is a function defined for a x b,

Math 104: Final exam solutions

MA123, Chapter 9: Computing some integrals (pp )

lecture 16: Introduction to Least Squares Approximation

SM2H. Unit 2 Polynomials, Exponents, Radicals & Complex Numbers Notes. 3.1 Number Theory

Why study large deviations? The problem of estimating buer overow frequency The performance of many systems is limited by events which have a small pr

The Elementary Arithmetic Operators of Continued Fraction

Numerical Solutions of Fredholm Integral Equations Using Bernstein Polynomials

Review of Sections

where i is the index of summation, a i is the ith term of the sum, and the upper and lower bounds of summation are n and 1.

Trapezoidal Rule of Integration

Graphing Review Part 3: Polynomials

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

Logarithmic Scales: the most common example of these are ph, sound and earthquake intensity.

BRAIN TEASURES INDEFINITE INTEGRATION+DEFINITE INTEGRATION EXERCISE I

Topic 9 - Taylor and MacLaurin Series

under the curve in the first quadrant.

We will begin by supplying the proof to (a).

Synopsis Grade 12 Math Part II

Mathematical Notation Math Calculus for Business and Social Science

Transcription:

Multiplictive Versios o Iiitesiml Clculus Wht hppes whe you replce the summtio o stdrd itegrl clculus with multiplictio? Compre the revited deiitio o stdrd itegrl D å ( ) lim ( ) D i With ( ) lim ( ) D D ( + ( ) ) lim ( + ( ) D) D i i d Cll these lter two itegrls multigrls o Type I d II. (Note: ulike orml products, these products re ot discrete ut cotiuous over itervl). Cosider ech i tur. Multigrls (Type I) By stdrd opertios ( ) e ( l( ( )) ) By ot tkig limits, iite product pproimtio c e otied. For emple, let () rom to. The the Type I multigrl o rom to is: e ( l( ) ) / e This c e pproimted y the sequece [( )( )] ( ).474... 3 3 3 [( )( )( )] ( ).4543... 4 4 4 3 3 4 [( )( )( )( )] ( ).447... 5 5 5 5 4... 999 [( )( )...( )] ( ).3693... etc 999 Which teds to /e.36788 (use Stirlig s Formul to support this).

pi / For ()t() i rdis rom to pi/, t( ) e Ad [ t( p / 6)t( p / 6) ] ( ) [ t( p /8)t( p / 8)t(3 p / 8) ] ( )... etc. 3 The ove pproimtios o the multigrl c e likeed to the mid-poit-rule whe pproimtig stdrd itegrls. Like stdrd itegrls, multiplictive logs o the Trpezoidl Rule d Simpso s Rule c e oud, like: Simpso s Product: ( )» ì[ ( ) ( )] ü D í{ [ ( + D ) ( + 3 D)...] 4 } ý ( ) 3 î {[ ( + D)...] } þ Cosider the ollowig pproimtios: Y e ( l( ) e ( l() - + ) 4 / e.4757765... Multiplictive Alog o. Mid-poit Rule Trpezoidl Rule Simpso s Rule.5 [()()]^(/).44. / [(.5)(.75)]^(/) [()()]^(/4).47999 [.5]^(/) /3 [(7/6)(9/6)(/6)]^(/3).47489668.4564753 [()()]^(/6) [(4/3)(5/3]^(/3).46476345... [()()]^((/)(/3)) [.5]^((4/3)(/)).4784.. /4 [(9/8)(/8)(3/8) (5/8)]^(/4).47343 [()()]^(/8) [(5/4)(6/4)(7/4)]^(/4).467743. [()()]^((/4)(/3)) [(.5)(.75)]^((4/3)(/4)) [.5]^((/3)(/4)).47466559. Like stdrd clculus you c deie multiplictive log o the derivtive ( the m-derivtive), costruct multiplictive versio o the Fudmetl Theorem o Clculus, costruct multiplictive log o Mcluri s Series, etc.

The m-derivtive or Type I multigrls is: ( ) ( ) e ( ) I ( ) The Fudmetl Theorem is: ( ) ( ) ( ) e (( ) ) I ( ) ( ) Compre with the Fudmetl Theorem o Stdrd Clculus: ( ) ( ) - ( ) Smll progrms c e writte to pproimte the ove results y iite products or those who dout. Type I multigrls id pplictio i the re o popultio dymics. With stochstic irth- d deth- rtes, the covetiol pproch is to use mes (ie: epecttios). Without migrtio, me popultios E(P) remi costt i me irth-rtes E() me deth-rtes E(d) uder the stochstic recursive equtio P ( + - + d) P. But, while mthemticlly correct, this result is misledig. I certi circumstces, simultios show tht me irth-rtes c sigiictly eceed me deth-rtes yet MOST popultio trils declie, eve though the me popultio o my trils stys costt. True. Let G() ( p( ) ) where X the rdom vrile o (+-d) d p() is its proility desity uctio. It c e show tht the MODE o popultios (P ) teds to {G() }P s. I geerl G() is < E()E(+-d). Thus whe E()E(d), the mode o P s eve though E(P ) P. Thus the stochstic recursive equtios (where r# is rdom umer etwee d ) P (.78888... r #) P + P ( r # +.7696) P + P ( r # +.544) P + re ll costt (i the log-term mode) ulike P ( r #) P + P ( r # +.5) P +

which re costt i the log-term me ut ted to zero i the mode. (Try simultig usig Ecel i you do t elieve). Now cosider Multigrls (TypeII) Cosider ( + ) which is the limit o the sequece: æ ö ç +.5 è ø æ öæ 3 ö ç + ç +.546875 è 4 øè 4 ø æ öæ 3 öæ 5 ö ç + ç + ç +.57355967 è 6 3 øè 6 3 øè 6 3 ø æ öæ 3 öæ 5 öæ 7 ö ç + ç + ç + ç +.58945565... etc. è 8 4 øè 8 4 øè 8 4 øè 8 4 ø which teds to sqr(e).64877 This is due to the o-stdrd itegrl (which is ot o the orm ( ) ) l( + ).5 d thus ( + ) e ( l( + )) e ( ) e I geerl, ( + ( ) ) e ( ( ) ) provided ( ( ) ) or Î N ³. Fuctios () which il the lter coditio pper to e ew. For istce, ()/ ils this test rom to s ( ) p / 6 (look t the limit deiitio o the itegrl uder equl suitervls to see this). But or most other uctios ( ( ) ) or Î N ³ For Type II multigrls, the m-derivtive is: ( ) II ( ) ( )

Ad the Fudmetl Theorem is: ( ) ( ) ( + II ( ) ) ( + ) ( ) ( ) Higher order m-derivtives c e lso used, like: ì ( ) ü í ý ( ) ( ) ( ) II ( ) ( ) ( ) ( + II ( ) ) ( ( ) ) î þ + - ( ) ( ) II ( ) ì ( ) ü ( ) ( ) í ý î ( ) þ Ad so o. I geerl, the Fudmetl Theorem ecomes more complicted or higher order m-derivtives, ulike (sy) polyomils with stdrd clculus. For istce, II ( ) Ad thus é ù ( ) ( ) æ ( ) ö æ ( ) ö - - ç + ç ( ) ( ) ç ( ) ç ( ) è ø è ø é ( ) ( ) ù - ( ) ( ) é ù ì ( ) ( ) æ ( ) ö æ ( ) ö ü ( ) ( ) - - ç + ç é ù ( ) ( ) ( ) ( ) ç ç è ø è ø - ( ) ( ) ( ( ) ) + í + II é ( ) ( ) ù ý - ( ) ( ) ( ) ( ) é ù - ( ) ( ) î þ For emple, let ()l(+) the '()/(+), ''()-/(+)^, '''()/(+)^3 d ()l(), ()l(3), etc. The II II ( ) ( )

( + ( ) ) ì é /( + ) 3 /( + ) æ - /( + ) ö ææ/( + ) ö öù ü ( ) + ( ) - ç ( ) + ç /( ) l( ) /( ) ç l( ) + + è + ø èè + ø ø í + ý é - /( + ) æ/( + ) öù ( ) - /( + ) ç l( + ) î è ø þ é ù l { ( + ) + l( + ) - } ( ) + l( + ) + () () é () () ù - () () () () - () () (/3)(( + / l(3))/( + / l())).53474447... Approimtig usig N suitervls gives: N pproimtio.5963.598.537 Whcko! Like stdrd clculus you c chge vriles i the stdrd wy: ( ) ì du ( + ( ) ) ( + u ) ( ) ( - ( u )) rom ílet u() the du () Þ u() Þ u() - îdu/ ()du/( ( ( u))) Ad thus, or emple: ( + ) ( + (( - ) + )( - ) ) Product d Quotiet Rules or Type I d II multigrls re:

Type I Derivtive ( ) e ( ) ( ) Product Rule ( g) g Quotiet Rule ( ) g g Type II ( ) ( ) ( g) + g ( ) - g g Surprisigly Type II multigrls hve the sme sort o Mcluri s Product s Type I. It is () æ () ö æ () ö e ç ç ()! è () ø 3! è () ø 3 ( ) () ( + + +...) Ad the two types o multigrl c e relted y ( ) ( + l( ( )) ) or cceptle (). Other Types o Multigrl With type II multigrls, prolems rise or uctios like ()/ due to the ct tht ( ( ) ) ¹ or Î ³. But sometimes relted multigrls c e evluted usig certi thet uctios. For istce, 3 5 ( + ( ) ) 5( + ( ) )( + ( ) )... cosh( p )».59... d ( - ( ) 4) - cosh( p )» -.59... d é ì 3 ü ù ( ) 3 íg ý cosh( p 3) ( ( ) 3) (4 3 ) î þ + + 7 p d the like. G( ) However, these type III multigrls hve certi uusul properties like

( + ( ) )) ( + ( ) )) k k ( + ( ) )) ( + ( ) ))... etc. So tke cre whe plyig roud with. Type IV Multigrls Surprisigly the multigrl e e e.5 ( + ( )) e ( - + -...)»... eists! ( e -) ( e -) ( e 3-) This is thks to the o-stdrd stdrd itegrls o e ( ).95957... ( e -) k e ( k / ) ( ) ( e k - ) These type o multigrls re more restricted (i rge) th type I d II, ut c still e used to derive certi stochstic limits such s ì ü e mod íå( r # i) ý».95957... î i þ ( e -) ì ü æ e e e.5 ö mod í ( + ( r # ) ) ý e ç - + -...»... i î i þ è ( e -) ( e -) ( e 3 -) ø Where mod is the mode d r# is rdom umer etwee d. Uswered Questios. How my types o multigrls re there? Do they ll hve m-derivtives, Fudmetl Theorems, logs o Simpso s Rule, Mcluri Series, etc?. Wht do multigrls do i the comple ple? Aswers plese. Hppy multigrtig! All commets welcome. Plese sed to: everythiglows@hotmil.com e