Expanding brackets and factorising

Similar documents

Basic Algebra. CAPS Mathematics

A Level Maths. Induction Booklet CONTENTS

Intermediate Tier - Algebra revision

Algebra Revision Guide

Mathematics Revision Guide. Algebra. Grade C B

SIXTH FORM MATHEMATICS A LEVEL INDUCTION BOOKLET SEPTEMBER Name:

A polynomial expression is the addition or subtraction of many algebraic terms with positive integer powers.

Factoring and Algebraic Fractions

MAIDSTONE GRAMMAR SCHOOL FOR GIRLS

CONTENTS CHECK LIST ACCURACY FRACTIONS INDICES SURDS RATIONALISING THE DENOMINATOR SUBSTITUTION

Algebra Using letters to represent numbers

Chapter 5 Simplifying Formulas and Solving Equations

IES Parque Lineal - 2º ESO

Algebra Student Signature: Parent/Carer signature:

Equations and inequalities

Algebraic Expressions

Section 2.4: Add and Subtract Rational Expressions

Chapter 8: Algebra Part 2

Algebra. Mathematics Help Sheet. The University of Sydney Business School

Year 8. Semester 2 Revisions

BASICS OF ALGEBRA M.K. HOME TUITION. Mathematics Revision Guides. Level: GCSE Foundation Tier

Factorizing Algebraic Expressions

A Level Summer Work. Year 11 Year 12 Transition. Due: First lesson back after summer! Name:

Roots of quadratic equations

Section 1.1 Notes. Real Numbers

CHAPTER 1. Review of Algebra

Algebra Year 10. Language

MAIDSTONE GRAMMAR SCHOOL FOR GIRLS DEPARTMENT OF MATHEMATICS

Math 101 Study Session Spring 2016 Test 4 Chapter 10, Chapter 11 Chapter 12 Section 1, and Chapter 12 Section 2

JUST THE MATHS UNIT NUMBER 1.5. ALGEBRA 5 (Manipulation of algebraic expressions) A.J.Hobson

A-LEVEL MATHS Bridging Work 2017

5.3. Polynomials and Polynomial Functions

APPENDIX : PARTIAL FRACTIONS

1. y is directly proportional to the square of x. When x = 4, y = 25. (a) Find an expression for y in terms of x. ... (3) (b) Calculate y when x = 2.

Summer Mathematics Packet Say Hello to Algebra 2. For Students Entering Algebra 2

Suppose we have the set of all real numbers, R, and two operations, +, and *. Then the following are assumed to be true.

Chapter 5: Exponents and Polynomials

Real Numbers. Real numbers are divided into two types, rational numbers and irrational numbers

Name: Chapter 7: Exponents and Polynomials

Maths Department. A Level Induction Booklet

( ) Chapter 6 ( ) ( ) ( ) ( ) Exercise Set The greatest common factor is x + 3.

To Find the Product of Monomials. ax m bx n abx m n. Let s look at an example in which we multiply two monomials. (3x 2 y)(2x 3 y 5 )

LESSON 16 More Complicated Evaluations

Core 1 Basic Algebra. Section 1: Expressions and equations

Numerical and Algebraic Fractions

Sail into Summer with Math!

Unit # 4 : Polynomials

Maths Department. A Level Induction Booklet

How could you express algebraically, the total amount of money he earned for the three days?

LESSON 8.1 RATIONAL EXPRESSIONS I

Expanding brackets and factorising

Lesson 5: The Distributive Property

Algebra. Topic: Manipulate simple algebraic expressions.

C if U can. Algebra. Name

Geometry 21 Summer Work Packet Review and Study Guide

Algebra I Polynomials

Algebra I. Polynomials.

There are two main properties that we use when solving linear equations. Property #1: Additive Property of Equality

SCHOOL OF MATHEMATICS MATHEMATICS FOR PART I ENGINEERING. Self-paced Course

Adding and Subtracting Polynomials

Chapter Usual types of questions Tips What can go ugly. and, common denominator will be

Mathematics: Year 12 Transition Work

144 Maths Quest 9 for Victoria

LESSON #1: VARIABLES, TERMS, AND EXPRESSIONS COMMON CORE ALGEBRA II

VARIABLES, TERMS, AND EXPRESSIONS COMMON CORE ALGEBRA II

CM2104: Computational Mathematics General Maths: 2. Algebra - Factorisation

Name: Class: IM8 Block:

P1 Chapter 1 :: Algebraic Expressions

1.9 Algebraic Expressions

Factorisation CHAPTER Introduction

Solving Equations Quick Reference

Applied 30S Unit 1 Quadratic Functions

Chapter 5 Simplifying Formulas and Solving Equations

Section 3.5: Multiplying Polynomials

Herndon High School Geometry Honors Summer Assignment

Gradient. x y x h = x 2 + 2h x + h 2 GRADIENTS BY FORMULA. GRADIENT AT THE POINT (x, y)

Alperton Community School. Preparation for. A Level Mathematics. This induction booklet is for students who wish to start AS Level Maths in Year 12.

Core 1 Module Revision Sheet J MS. 1. Basic Algebra

Chapter 1.6. Perform Operations with Complex Numbers

5.1 Modelling Polynomials

Chapter 1 Review of Equations and Inequalities

Alg 1B Chapter 7 Final Exam Review

Math 2 Variable Manipulation Part 3 Polynomials A

ABOUT THIS BOOK THIS BOOK IS COMPLIANT WITH THE BOSTES NSW MATHEMATICS STAGE 5.3 SYLLABUS.

1.20 Formulas, Equations, Expressions and Identities

Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0

Arithmetic Operations. The real numbers have the following properties: In particular, putting a 1 in the Distributive Law, we get

Remember, you may not use a calculator when you take the assessment test.

Preliminary chapter: Review of previous coursework. Objectives

Answers to Sample Exam Problems

Introduction to A-Level Maths (Bridging Unit)

Lesson 13: More Factoring Strategies for Quadratic Equations & Expressions

Adding and Subtracting Terms

3.5 Solving Equations Involving Integers II

Algebraic Expressions and Identities

Classifying Polynomials. Simplifying Polynomials

If you buy 4 apples for a total cost of 80 pence, how much does each apple cost?

STEP Support Programme. Hints and Partial Solutions for Assignment 17

Collecting Like Terms

Transcription:

Chapter 7 Expanding brackets and factorising This chapter will show you how to expand and simplify expressions with brackets solve equations and inequalities involving brackets factorise by removing a common factor expand two brackets 7.1 Expanding brackets You will need to know how to multiply positive and negative numbers add and subtract negative numbers collect like terms When multiplying algebraic terms remember that x x x y y y 2 gh g h More complicated multiplications can also be simplified. EXAMPLE 1 Simplify f 4g. f 4g f 4 g 4 f g 12 fg 12fg To multiply algebraic terms, multiply the numbers then multiply the letters. Multiplying a bracket You can work out 6 4 by thinking of 4 as 0 1 4. 6 4 6 (0 1 4) 6 0 1 6 4 180 1 24 204 0 4 6 6 0 6 4 Algebra 101

Brackets are often used in algebra. 6(x 1 4) means 6 (x 1 4) As in the 6 4 example, you have to multiply each term inside the brackets by 6. 6(x 1 4) 6 x 1 6 4 6x 1 24 It is like working out the area of a rectangle that has length x 1 4 and width 6 x 4 6 area = 6 x = 6x area = 6 4 = 24 Total area 6(x 1 4) 6 x 1 6 4 6x 1 24 When you do this it is called expanding the brackets. It is also known as removing the brackets or multiplying out the brackets. You find the total area by adding the area of the two smaller rectangles. When you remove the brackets you must multiply each term inside the brackets by the term outside the bracket. EXAMPLE 2 Simplify these by multiplying out the brackets. (a) (a 1 6) (b) 2(x 2 8) (c) (2c 2 d) (a) (a 1 6) a 1 6 a 1 0 (b) 2(x 2 8) 2 x 2 2 8 2x 2 16 (c) (2c 2 d) 2c 2 d 6c 2 d You must multiply each term inside the bracket by the term outside the bracket. 2c 2 c 6 c 6c 102 Algebra

Expanding brackets and factorising EXERCISE 7A 1 Simplify these expressions. (a) 2 k (b) 6b (c) 4a (d) a 2b (e) 4c d (f) x y 2 Expand the brackets to find the value of these expressions. Check your answers by working out the brackets first. (a) 2(0 1 7) (b) (40 1 6) (c) 6(70 1 ) (d) (40 2 2) (e) 7(0 2 4) (f) 8(40 2 ) Remove the brackets from these. (a) (p 1 6) (b) (x 1 y) (c) 4(u 1 v 1 w) (d) 2(y 2 8) (e) 7(9 2 z) (f) 8(a 2 b 1 6) 4 Expand the brackets in these expressions. (a) (2c 1 6) (b) (4t 1 ) (c) 2(p 1 q) (d) (2a 2 b) (e) 6(c 2 2d) (f) 7(2x 1 y 2 ) (g) 6(a 2 4b 1 c) (h) 2(x 2 1 x 1 2) (i) 4(y 2 2 y 2 10) Write down the 6 pairs of cards which show equivalent expressions. Remember, you must multiply each term inside the brackets by the term outside the bracket. A common mistake is to forget to multiply the second term. Remember 2c 2 c 6c 4(x 1 2y) 4x 1 2y 2(4x 1 y) 4(2x 2 y) A B C D 8x 2 8y 4x 1 8y 8(x 2 y) 2x 2 8y E F G H 8x 1 2y 2(x 2 4y) 2(2x 1 y) 8x 2 4y I J K L You can use the same method for expressions that have an algebraic term instead of a number term outside the bracket. EXAMPLE Expand the brackets in these expressions. (a) a(a 1 4) (b) x(2x 2 y) (c) t(t 2 1 1) (a) a(a 1 4) a a 1 a 4 a 2 1 4a (b) x(2x 2 y) x 2x 2 x y 2x 2 2 xy (c) t(t 2 1 1) t t 2 1 t 1 t 1 t Remember a a a 2 x 2x x 2 x 2 x x 2x 2 Remember x y xy t t 2 t t t t Algebra 10

EXERCISE 7B Expand the brackets in these expressions. 1 b(b 1 4) 2 a( 1 a) k(k 2 6) 4 m(9 2 m) a(2a 1 ) 6 g(4g 1 1) 7 p(2p 1 q) 8 t(t 1 w) 9 m(m 1 n) 10 x(2x 2 y) 11 r(4r 2 t) 12 a(a 2 4b) 1 2t(t 1 ) 14 x(x 2 8) 1 k(k 1 l) 16 a(2a 1 4) 17 2g(4g 1 h) 18 p(p 2 2q) 19 x(2y 1 z) 20 r(r 2 1 1) 21 a(a 2 1 ) 22 t(t 2 7) 2 2p(p 2 1 q) 24 4x(x 2 1 x) Remember x 4x 4 x x 12x 2 Adding and subtracting expressions with brackets Adding To add expressions with brackets, expand the brackets first, then collect like terms to simplify your answer. Collecting like terms means adding all the terms in x, all the terms in y and so on. EXAMPLE 4 Expand then simplify these expressions. (a) (a 1 4) 1 2a 1 10 (b) (2x 1 ) 1 2(x 2 4) (a) (a 1 4) 1 2a 1 10 a 1 12 1 2a 1 10 a 1 2a 1 12 1 10 a 1 22 (b) (2x 1 ) 1 2(x 2 4) 6x 1 1 1 2x 2 8 6x 1 2x 1 1 2 8 8x 1 7 Expand the brackets first. Then collect like terms. Expand both sets of brackets first. Subtracting If you have an expression like 2(2x 2 ), multiply both terms in the brackets by 2. 2 2x 26x and 2 2 1 So 2(2x 2 ) 2 2x 1 2 2 26x 1 1 Multiplying 104 Algebra

Expanding brackets and factorising EXAMPLE Expand these expressions. (a) 22(t 1 4) (b) 2(4x 2 1) (a) 22(t 1 4) 22 t 1 22 4 26t 1 28 26t 2 8 (b) 2(4x 2 1) 2 4x 1 2 21 212x 1 22 26 22 4 28 2 4 212 2 21 1 EXAMPLE 6 Expand then simplify these expressions. (a) (2t 1 1) 2 2(2t 1 4) (b) 8(x 1 1) 2 (2x 2 ) (a) (2t 1 1) 2 2(2t 1 4) 6t 1 2 4t 2 8 6t 2 4t 1 2 8 2t 2 (b) 8(x 1 1) 2 (2x 2 ) 8x 1 8 2 6x 1 1 8x 2 6x 1 8 1 1 2x 1 2 Remember to multiply both terms in the second bracket by 22. Expand the brackets first. Remember that 2 2 11. Then collect like terms. EXERCISE 7C Expand these expressions. 1 22(2k 1 4) 2 2(2x 1 6) 2(n 2 1) 4 24(t 1 ) 2(4p 2 1) 6 22(x 2 7) Expand then simplify these expressions. 7 (y 1 4) 1 2y 1 10 8 2(k 1 6) 1 k 1 9 9 4(a 1 ) 2 2a 1 6 10 (t 2 2) 1 4t 2 10 11 (2y 1 ) 1 2(y 1 ) 12 4(x 1 7) 1 (x 1 4) 1 (2x 1 ) 1 2(x 2 4) 14 2(4n 1 ) 1 (n 2 ) 1 (x 2 ) 1 2(x 2 ) 16 4(2x 2 1) 1 2(x 2 2) 17 (2b 1 1) 2 2(2b 1 4) 18 4(2m 1 ) 2 2(2m 1 ) 19 2(t 1 ) 2 2(t 1 1) 20 (2k 1 2) 2 4(2k 1 6) 21 8(a 1 1) 2 (2a 2 ) 22 2(4p 1 1) 2 4(p 2 ) 2 (2g 2 4) 2 2(4g 2 6) 24 2(w 2 4) 2 (2w 2 1) 2 x(x 1 ) 1 4(x 1 2) 26 x(2x 1 1) 2 (x 2 4) Algebra 10

7.2 Solving equations involving brackets Equations sometimes involve brackets. When dealing with equations involving brackets, you usually expand the brackets first. EXAMPLE 7 Solve 4(c 1 ) 20. Method A 4(c 1 ) 20 4c 1 12 20 4c 1 12 2 12 20 2 12 4c 8 4c 4 8 4 c 2 Method B 4(c 1 ) 20 c 1 20 4 c 1 c 2 c 2 Expand the bracket by multiplying both terms inside the bracket by the term outside the bracket. You must subtract 12 from both sides before dividing both sides by 4. Since 4 divides exactly into 20 you can divide both sides by 4 first. EXAMPLE 8 Solve 2(p 2 4) 7. 2(p 4) 7 6p 8 7 6p 8 1 8 7 1 8 6p 1 6p 6 1 6 p 2. Expand the bracket. You must add 8 to both sides before dividing both sides by 6. 106 Algebra

Expanding brackets and factorising EXERCISE 7D 1 Solve these equations. (a) 4(g 1 6) 2 (b) 7(k 1 1) 21 (c) (s 1 10) 6 (d) 2(n 2 4) 6 (e) (f 2 2) 24 (f) 6(v 2 ) 42 (g) 4(m 2 ) 14 (h) 2(w 1 7) 19 2 Solve these equations. (a) 4(t 1 2) 48 (b) (2r 1 4) 0 (c) 2(2b 1 2) 22 (d) 2(w 2 6) 27 (e) (4x 2 2) 24 (f) (2y 1 11) 40 (g) 6(2k 2 1) 6 (h) (2a 2 1) 18 When two brackets are involved, expand both brackets then collect like terms before solving. Like terms are terms of the same kind. In Example 9 there are only terms in m and number terms. EXAMPLE 9 Solve 2(2m 1 10) 12(m 2 1). 2(2m 1 10) 12(m 2 1) 4m 1 20 12m 2 12 20 1 12 12m 2 4m 2 8m m 4 Expand the brackets on both sides of the equation and collect like terms. Collect terms in m on the RHS because 12m on the RHS is greater than 4m on the LHS. This keeps the m term positive. When an equation involves fractions, it can be transformed into an equation without fractions by multiplying all terms by the LCM of the numbers in the denominators. LCM means Lowest Common Multiple. EXAMPLE 10 Solve the equation x 1 17 4 x 1 2. x 1 17 x 1 2 4 4(x 1 17) 4(x 1 2) 4 x 1 17 4x 1 8 17 2 8 4x 2 x 9 x x Multiply both sides by 4, collect like terms and then finally divide by. Note the use of brackets. Collect the terms in x on the RHS and the numbers on the LHS. 4x on the RHS is greater than x on the LHS. Algebra 107

EXAMPLE 11 Solve the equation x 2 6 x 2 6 x 1 4 1(x 2 6) 1(x 1 4) (x 6) (x 1 4) x 2 0 x 1 12 x 2 x 12 1 0 2x 42 x 21 x 1 4. Look at the denominators. and have a LCM of 1 so multiply both sides of the equation by 1. Note the use of brackets. Always put them in when you multiply in this way. Then solve using the method shown in Example 9. EXAMPLE 12 Solve the equation 2x 1 6 1 x 2 2 2. 6(2x 1 ) 1 6(x 2 2) 6() 6 2 2x 1 1 2(x 2 2) 1 2x 1 1 2x 2 4 1 4x 2 1 1 4x 16 x 4 The LCM here is 6. Note the use of brackets. The most common mistake is to forget to multiply all terms by the LCM. This means the number on the RHS as well as the terms on the LHS. EXERCISE 7E 1 Solve these equations. (a) 2a 1 4 (a 2 1) (b) (d 2 2) 2d 2 1 (c) (x 1 ) 11x 1 (d) 12p 1 (p 1 7) (e) 4t 1 (2t 2 ) (f) b 2 4 2(2b 2 7) (g) 8(g 2 1) 1g 1 10 (h) (2k 1 6) 17k 1 7 (i) 2(y 1 ) y 1 12 (j) r 1 4(2r 1 ) 2 Solve the following equations by expanding both brackets. (a) 2(b 1 1) 8(2b 2 ) (b) (4a 1 7) (8a 1 9) (c) 6(x 2 2) (x 2 8) (d) (2p 1 2) 6(p 1 ) (e) 9(s 2 4) (4s 2 ) (f) 4(10t 2 7) (6t 2 2) (g) 4(2w 1 2) 2(w 1 7) (h) (y 2 2) 7(y 2 2) Use Example 9 to help. 108 Algebra

Expanding brackets and factorising Solve these equations. (a) d 1 1 (c) x 2 1 8 (e) c 2 8 4 4 Solve these equations. (a) x 1 1 x 2 1 4 (c) x 1 1 (e) x 1 2 7 2 d (b) 6y 2 x 2 2 (d) 6 1 a 2 c 1 1 (f) 10 2 b 2x x 1 6 Solve these equations. (a) x 1 1 1 x 1 2 2 (c) x 1 2 (e) x 2 4 1 x 1 2 2 x 1 (b) 2x 2 1 (d) x 1 2 (f) 8 2 x 2 (b) x 1 2 4 2 (d) x 2 1 1 (f) 2x 1 4 y 1 a 1 4 12 1 b x 2 x 2 2x 1 2 1 x 1 1 7 2 x 1 2 2 x 1 4 1 2 Use Example 10 to help. Use Example 11 to help. Use Example 12 to help. 7. Solving inequalities involving brackets Inequalities can also involve brackets. Remember that there is usually more than one answer when you solve an inequality and you need to state all possible values of the solution set. EXAMPLE 1 Solve these inequalities. (a) 9 < (y 2 1) (b) (2x 2 ). 2(x 1 4) (a) 9 < (y 2 1) (b) (2x 2 ). 2(x 1 4) 9 < y 2 6x 2 1. 2x 1 8 9 1 < y 6x 2 2x. 8 1 1 12 < y 4x. 2 4 < y x. 2 4 x. 4 You must remember to keep the inequality sign in your answer. For example, if you leave (a) as 4 y you will lose a mark because you have not included all possible values of y. If you are asked for integer solutions to (b) the final answer will be x > 6. Algebra 109

EXAMPLE 14 n is an integer. List the values of n such that 211, 2(n 2 ), 1. 211, 2(n ), 1 211, 2n 6, 1 211 1 6, 2n, 1 1 6 2, 2n, 7 22., n,. Values of n are 22, 21, 0, 1, 2, This is a double inequality. Expand the bracket. Add 6 throughout. Remember to list the integer solutions as you were asked to in the question. Remember to include 0. EXERCISE 7F 1 Solve these inequalities. (a) 2(x 2 7) < 8 (b) 7, 2(m 1 ) (c) 4(w 2 1). 20 (d) (2y 1 1) < 21 (e) 2(p 2 ). 4 1 p (f) 1 2 k, 2( 1 2k) (g) (x 2 1) > (x 1 2) (h) 2(n 1 ) < (2n 2 2) 2 Solve these inequalities then list the integer solutions. (a) 24 < 2x < 8 (b) 26, y, 1 (c) 28 < 4n, 17 (d) 212, 6m < 0 (e) 2, 2(t 1 1), 7 (f) 2, (x 2 4), 6 (g) 26 < (y 1 1) < 11 (h) 217, 2(2x 2 ) < 10 7.4 Factorising by removing a common factor Factorising an algebraic expression is the opposite of expanding brackets. To factorise an expression, look for a common factor that is, a number that divides into all the terms in the expression. To factorise completely, use the HCF of the terms. For example, 6x 1 10 can be written as 2(x 1 ) because 6x 2 x and 10 2 HCF means highest common factor. 2 is a factor of 6x. 2 is also a factor of 10. So 2 is a common factor of 6x and 10. Notice that the common factor is the term outside the bracket. 110 Algebra

Expanding brackets and factorising EXAMPLE 1 Copy and complete these. (a) t 1 1 (h 1 ) (b) 4n 1 12 h(n 1 ) (a) t 1 1 (t 1 ) (b) 4n 1 12 4(n 1 ) Because t t (and 1) 4 n 4n and 4 12 EXAMPLE 16 Factorise these expressions. (a) a 1 20 (b) 4x 2 12 (c) x 2 1 7x (d) 6p 2 q 2 2 9pq (a) a 1 20 a 1 4 (a 1 4) (a 1 4) Check (a 1 4) a 1 4 a 1 20 (b) 4x 2 12 4 x 2 4 4(x 2 ) 4(x 2 ) (c) x 2 1 7x x x 1 x 7 x(x 1 7) x(x 1 7) (d) 6p 2 q 2 2 9pq 2 p p q q 2 p q q q pq 2 (2p 2 q) pq 2 (2p 2 q) is a factor of a a a is also a factor of 20 20 4 So is a common factor of a and 20 and is the term outside the bracket. Check your answer by removing the brackets. 2 is a factor of 4x and 12. 4 is also a common factor of 4x and 12. Use 4 because it is the highest common factor (HCF) of 4x and 12. Always look for the HCF. x is a common factor of x 2 and 7x. The HCF is pq 2. EXERCISE 7G 1 Copy and complete these. (a) x 1 1 (h 1 ) (b) a 1 10 (h 1 2) (c) 2x 2 12 2(x 2 h) (d) 4m 2 16 4(m 2 h) (e) 4t 1 12 h(t 1 ) (f) n 1 18 h(n 1 6) (g) 2b 2 14 h(b 2 7) (h) 4t 2 20 h(t 2 ) Use Example 1 to help. Don t forget to check your answers by removing the brackets. Algebra 111

2 Factorise these expressions. (a) p 1 20 (b) 2a 1 12 (c) y 1 1 (d) 7b 1 21 (e) 4q 1 12p (f) 6k 1 24l Factorise these expressions. (a) 4t 2 12 (b) x 2 9 (c) n 2 20 (d) 2b 2 8 (e) 6a 2 18b (f) 7k 2 7 4 Factorise these expressions. (a) y 2 1 7y (b) x 2 1 x (c) n 2 1 n (d) x 2 2 7x (e) p 2 2 8p (f) a 2 2 ab Factorise these expressions. (a) 6p 1 4 (b) 4a 1 10 (c) 6 2 4t (d) 12m 2 8n (e) 2x 1 1y (f) 12y 2 9z 6 Factorise completely. (a) x 2 2 6x (b) 8x 2 2 xy (c) 8a 1 4ab (d) p 2 p 2 (e) t 1 6t 2 (f) 10yz 2 1y 2 (g) 18a 2 1 12ab (h) 16p 2 2 12pq 7 Factorise these expressions. (a) 4ab 2 1 6ab (b) 10xy 2 x 2 (c) p 2 q 2 6p q 2 (d) 8mn 1 4n 2 2 6m 2 n (e) 6h 2 k 2 12hk 2 18h 2 k 2 Use Example 16(a) to help. Remember 1 Use Example 16(c) to help. Remember n n 1 Remember 6p 2 p Use Example 16(a) to help. Look for the common factors in the terms. Expanding two brackets You can use a grid method to multiply two numbers. For example, 4 7 4 7 (0 1 4) (0 1 7) 0 7 0 0 1 0 7 1 4 0 1 4 7 0 100 210 100 1 210 1 200 1 28 4 200 28 198 You can also use a grid method when you multiply two brackets together. You have to multiply each term in one bracket by each term in the other bracket. For example, To expand and simplify (x 1 2)(x 1 ) x x x 2 x 2 2x 10 (x 1 2)(x 1 ) x x 1 x 1 2 x 1 2 x 2 1 x 1 2x 1 10 x 2 1 7x 1 10 You simplify the final expression by collecting the like terms. x 1 2x 7x. 112 Algebra

Expanding brackets and factorising It is like working out the area of a rectangle of length x 1 and width x 1 2. Total area (x 1 2)(x 1 ) x 2 1 x 1 2x 1 10 x 2 1 7x 1 10 x 2 x area = x x = x 2 area = x = x area = 2 x = 2x area = 2 = 10 EXAMPLE 17 Expand and simplify these. (a) (a 1 4)(a 1 10) (b) (t 1 6)(t 2 2) (a) a 10 a a 2 10a 4 4a 40 (a 1 4)(a 1 10) a a 1 a 10 1 4 a 1 4 10 a 2 1 10a 1 4a 1 40 a 2 1 14a 1 40 (b) t 22 t t 2 22t 6 6t 212 (t 1 6)(t 2 2) t t 1 t (22) 1 6 t 1 6 (22) t 2 2 2t 1 6t 2 12 t 2 1 4t 2 12 Remember you can use a grid to help. Remember to multiply each term in the first bracket by each term in the second bracket. Remember you are multiplying by 22. 1 ve 2 ve 2 ve. Look again at the last example. (t 6) (t 2) t 2 2 2t 1 6t 2 12 t 2 1 4t 2 12 The First terms in each bracket multiply to give t 2. The Outside pair of terms multiply to give 22t. The Inside pair of terms multiply to give 16t. The Last terms in each bracket multiply to give 212. This method is often known as FOIL and is another way of expanding brackets. Algebra 11

EXERCISE 7H Expand and simplify. 1 (a 1 2)(a 1 7) 2 (x 1 )(x 1 1) (x 1 )(x 1 ) 4 (t 1 )(t 2 2) (x 1 7)(x 2 4) 6 (n 2 )(n 1 8) 7 (x 2 4)(x 1 ) 8 (p 2 4)(p 1 4) 9 (x 2 9)(x 2 4) 10 (h 2 )(h 2 8) 11 (y 2 )(y 2 ) 12 (4 1 a)(a 1 7) 1 (m 2 7)(8 1 m) 14 (6 1 q)(7 1 q) 1 (d 1 )(4 2 d) 16 (8 2 x)( 2 x) 17 (x 2 12)(x 2 7) 18 (y 2 16)(y 1 6) Be careful when there are negative signs 2 this is where a lot of mistakes are made. Squaring an expression You can use the same method of expanding two brackets for examples involving the square of an expression. To square an expression, write out the bracket twice and expand. EXAMPLE 18 Expand and simplify (x 1 4) 2. (x 4) (x 4) (x 1 4) 2 (x 1 4)(x 1 4) x 2 1 4x 1 4x 1 16 x 2 1 8x 1 16 You need to multiply the expression (x 1 4) by itself so write down the bracket twice and expand as you did in Example 17 or use FOIL as in this example. Notice that you do not just square the x and the 4, there are two other terms in the expansion. EXERCISE 7I 1 Expand and simplify. (a) (x 1 ) 2 (b) (x 1 6) 2 (c) (x 2 ) 2 (d) (x 1 1) 2 (e) (x 2 4) 2 (f) (x 2 ) 2 (g) (x 1 7) 2 (h) (x 2 8) 2 (i) ( 1 x) 2 (j) (2 1 x) 2 (k) ( 2 x) 2 (l) (x 1 a) 2 2 Copy and complete these by finding the correct number to go in each box. (a) (x 1 h) 2 x 2 1 hx 1 6 (b) (x 2 h) 2 x 2 2 hx 1 49 (c) (x 1 h) 2 x 2 1 18x 1 h (d) (x 2 h) 2 x 2 2 20x 1 h In question 1, see if you can spot the pattern between the terms in the brackets and the final expression. 114 Algebra

Expanding brackets and factorising Expand and simplify. (a) (x 1 4)(x 2 4) (b) (x 1 )(x 2 ) (c) (x 1 2)(x 2 2) (d) (x 2 11)(x 1 11) (e) (x 2 )(x 1 ) (f) (x 2 1)(x 1 1) (g) (x 1 9)(x 2 9) (h) (x 1 a)(x 2 a) (i) (t 1 x)(t 2 x) What happens to the x term when you multiply brackets of the form (x 1 a)(x 2 a)? EXAMPLE 19 Expand and simplify (x 2 y)(x 2 2y). x 22y x x 2 26xy 2y 2xy 2y 2 (x 2 y)(x 2 2y) x 2 2 6xy 2 xy 1 2y x 2 2 7xy 1 2y 2 Remember to multiply each term in the first bracket by each term in the second bracket. Be careful when there are negative signs. This is where a lot of mistakes are made. 1 ve 2 ve 2 ve. 2 ve 2 ve 1 ve. EXERCISE 7J Expand and simplify. 1 (a 1 2)(a 1 4) 2 (x 1 )(x 1 2) (2t 1 )(t 1 ) 4 (4y 1 1)(2y 1 7) (6x 1 )(2x 1 ) 6 (4x 1 )(x 2 1) 7 (2z 1 )(z 2 2) 8 (y 1 1)(7y 2 8) 9 (n 2 )(n 1 8) 10 (b 2 )(2b 1 1) 11 (p 2 4)(7p 1 ) 12 (2z 2 )(z 2 4) 1 (x 2 9)(2x 2 1) 14 (2y 2 )(2y 2 ) 1 (2 1 a)(4a 1 ) 16 (x 1 4) 2 17 (2x 2 7) 2 18 ( 2 4x) 2 19 (2x 1 1)(2x 2 1) 20 (y 1 2)(y 2 2) 21 (n 1 4)(n 2 4) 22 (x 1 )(x 2 ) 2 (1 1 2x)(1 2 2x) 24 (t 1 2x)(t 2 2x) Can you see the connection between questions 19 24 and question in Exercise 7I? Algebra 11

EXAMINATION QUESTIONS 1 Solve the inequality 7 2 x > 217, given that x is a positive integer. [] (CIE Paper 2, Nov 2000) 2 Solve the inequality 2 2 x, 7. [2] (CIE Paper 2, Jun 2001) Solve the inequality (x 1 7), x 2 9. [2] (CIE Paper 2, Jun 2002) 4 (a) Solve the inequality 2 2x > 1 2 + x 4. [] (b) List the positive integers which satisfy the inequality 2 2x > 1 2 + x 4. [1] (CIE Paper 2, Nov 2002) Solve the equation x 2 8 22. [2] 4 (CIE Paper 2, Jun 2004) 6 (a) Factorise completely 12x 2 2 y 2. [2] (b) (i) Expand (x 2 ) 2. [2] (ii) x 2 2 6x 1 10 is to be written in the form (x 2 p) 2 1 q. Find the values of p and q. [2] (CIE Paper 2, Jun 2004) 7 Solve the equation x 2 2 (CIE Paper 2, Nov 2004) 8. [2] 116 Algebra