Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0

Size: px
Start display at page:

Download "Expansion of Terms. f (x) = x 2 6x + 9 = (x 3) 2 = 0. x 3 = 0"

Transcription

1 Expansion of Terms So, let s say we have a factorized equation. Wait, what s a factorized equation? A factorized equation is an equation which has been simplified into brackets (or otherwise) to make analyzing it a bit easier. For example, by factorizing some quadratic equations, we don t need to use the quadratic formula to find values that will make the equation equal zero. Example 1: Using the knowledge that the function f (x) = x2 6x + 9 = (x 3) 2, calculate the values of x where f(x) = 0. Method 1: The Quadratic Equation f (x) = x 2 6x + 9 = 0 a = 1,b = 6,c = 9 x = b ± b2 4ac 2a x = ( 6) ± ( 6)2 4(1)(9) 2(1) x = 6 ± x = 6 ± 0 2 x = 3 Method 2: Using the Factorized Equation f (x) = x 2 6x + 9 = (x 3) 2 = 0 ( x 3) 2 = 0 x 3 = 0 x = 3 We can clearly see here that factorizing equations is clearly beneficial, sometimes. The equation is easier to write up, we can analyze points quicker and more efficiently. Question: What happens when we need to analyze specific terms in an equation? Well, we end up with problems. What do we do when we need to add something like (x 4)2 into the equation? We can t just combine the two equations, that d be ugly. Instead, what we do is expand the two equations. No, not like balloons, but there s a few techniques we can use that will stop our expanded equations from ballooning out.

2 Technique One: F.O.I.L. The first technique, F.O.I.L, is used exclusively for equations with two brackets with two terms each in them. For example, a factorized equation such as (x 4)(x + 3). The idea is simple. To expand the two brackets, we need to multiply each term on the left hand bracket with each term on the right hand bracket. Now, if we just did that, we might get the answer, or lost along the way. F.O.I.L. is a way to make things significantly easier. It s an acronym for expanding, and it goes something like this: First Outer Inner Last The idea is, that by following this order, you ll cover all of the terms, and not multiply something twice (or even the wrong numbers). Let s apply this: Example 2: Expand the function f (x) = (x 4)(x + 3). f (x) = (x 4)(x + 3) F = x x O = x 3 I = ( 4) x ( )( 3) L = 4 f (x) = F + O + I + L f (x) = x 2 + 3x 4x 12 f (x) = x 2 x 12 Identify each expanded term in F.O.I.L. Swap f(x) for F+O+I+L. Simplify. ONLY use F.O.I.L. when you re expanding two brackets. Keep in mind that things like (x 2)(x 3)3 do not contain two brackets, but actually contain more. If you have a bit of trouble with using F.O.I.L., you can always try thinking of using a different acronym, or trying your own methods. Just be careful, if you end up making an acronym that makes a lot of careless mistakes, it may not be the best idea to use it.

3 Technique Two: Expansion Rules So you ve found an equation that you couldn t expand using F.O.I.L. It s not the end of the world, don t worry. There are actually a few techniques to expand equations. The next one we will be learning is fairly straightforward. They re called the expansion rules. Basically, there s a few rules we can follow to expand equations easily. They re listed just below. Quadratic Equations (a + b) 2 = a 2 + 2ab + b 2 (a b) 2 = a 2 2ab + b 2 (a + b)(a b) = a 2 b 2 Cubic Equations (a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 (a b) 3 = a 3 3a 2 b + 3ab 2 b 3 (a b)(a 2 + ab + b 2 ) = a 3 b 3 Now, these formulas are straightforward to use, but only apply to quadratic and cubic functions. Now, let s apply these. Example 3: Expand f (x) = (x 4)2. f (x) = (x 4) 2 Find the rule that applies to the question. (a b) 2 = a 2 2ab + b 2 Define the terms of a and b. a = x b = 4 Expand f (x) = x 2 2(4)(x) + (4) 2 f (x) = x 2 8x +16 Now, we can apply this to any number of two termed expressions, provided that they re in this form. However, for two termed expressions that are taken to the power of four, or five, or even more, we re unable to use either technique. So, we use technique three. It s called binomial expansion.

4 Technique Three: Binomial Expansion The binomial expansion goes a little like this: (a + b) n = a n + n C 1 (a n 1 )(b 1 ) + n C 2 (a n 2 )(b 2 ) + n C n 2 (a 2 )(b n 2 ) + n C n 1 (a 1 )(b n 1 ) + b n where n! n C x = x! ( n x)! So, when we are unable to use the first two techniques, and we need to expand things with to a power > 4, we use the binomial expansion. Let s try an example. Example 4: Expand f (x) = (x 4)5 f (x) = (x 4) 5 Utilize the Binomial Expansion formula. f (x) = x C 1 (x 4 )( 4) + 5 C 2 (x 3 )( 4) C 3 (x 2 )( 4) C 4 (x)( 4) 4 + ( 4) 5 f (x) = x 5 + (5)( 4)(x 4 ) + (10)(16)(x 3 ) + (10)( 64)(x 2 ) + (5)(256)(x) + ( 1024) f (x) = x 5 20x x 3 640x x 1024 Note: We can only apply this to factorized equations where we have two terms in the brackets. We can t expand something like (a + b + c)n with this, that uses a different method altogether (which we don t need to know). But I can t use any of these! Got an equation like g(x) = (4x + 3)(2x2 + 6x + 3)? Ouch, you must be having a bad day. Not to worry. Even though we can t use any of these techniques as is, we can modify the F.O.I.L. method to suit our needs. Just remember -> Each term on the left hand side needs to be multiplied with a term on the right hand side, just once. Then the terms need to be collected. Example 5: Expand g(x) = (4x + 3)(2x2 + 6x + 3). g(x) = (4x + 3)(2x 2 + 6x + 3) g(x) = (4x)(2x 2 + 6x + 3) + 3(2x 2 + 6x + 3) g(x) = 8x x 2 +12x + 6x 2 +18x + 9 g(x) = 8x x x + 9 Expand the equation, with each term separate. Expand. Gather like terms and simplify. Keep in mind, you may encounter hybrids of any or all of these formulas in a question, so try to remember as many of these as you can.

5 Example 6: Expand h(x) = (2x 4)4 (x 3)(x + 3) h(x) = (2x 4) 4 (x 3)(x + 3) Separate the function into two smaller equations, m(x) and n(x). m(x) = (2x 4) 4 n(x) = (x 3)(x + 3) Expand each mini equation. m(x) = (2x) C 1 (2x) 3 ( 4) + 4 C 2 (2x) 2 ( 4) C 3 (2x) 1 ( 4) 3 + ( 4) 4 m(x) = 16x 4 + (4)(8)( 4)x 3 + (6)(4)(16)x 2 + (4)(2)( 64)x m(x) = 16x 4 128x x 2 512x n(x) = (x + 3)(x 3) (a + b)(a b) = a 2 b 2 (x + 3)(x 3) = x 2 9 m(x)n(x) = h(x) Recombine the two expanded equations. Remember - m(x)n(x)=h(x) h(x) = (16x 4 128x x 2 512x + 256)(x 2 9) Expand the equation again, keeping each term seperate. h(x) = x 2 (16x 4 128x x 2 512x + 256) 9(16x 4 128x x 2 512x + 256) Expand and simplify. h(x) = 16x 6 128x x 4 512x x 2 144x x x x 2304 h(x) = 16x 6 128x x x x x 2304 Keep in mind, Example 6 probably goes a bit too far with the difficulty of the question. Don t expect something that crazy. What next? Now, you should go and attempt Self Help Tutorial - Expansion of Terms.

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x

To factor an expression means to write it as a product of factors instead of a sum of terms. The expression 3x Factoring trinomials In general, we are factoring ax + bx + c where a, b, and c are real numbers. To factor an expression means to write it as a product of factors instead of a sum of terms. The expression

More information

Lesson 21 Not So Dramatic Quadratics

Lesson 21 Not So Dramatic Quadratics STUDENT MANUAL ALGEBRA II / LESSON 21 Lesson 21 Not So Dramatic Quadratics Quadratic equations are probably one of the most popular types of equations that you ll see in algebra. A quadratic equation has

More information

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions

MEI Core 1. Basic Algebra. Section 1: Basic algebraic manipulation and solving simple equations. Manipulating algebraic expressions MEI Core Basic Algebra Section : Basic algebraic manipulation and solving simple equations Notes and Examples These notes contain subsections on Manipulating algebraic expressions Collecting like terms

More information

3.4 Pascal s Pride. A Solidify Understanding Task

3.4 Pascal s Pride. A Solidify Understanding Task 3.4 Pascal s Pride A Solidify Understanding Task Multiplying polynomials can require a bit of skill in the algebra department, but since polynomials are structured like numbers, multiplication works very

More information

Polynomials; Add/Subtract

Polynomials; Add/Subtract Chapter 7 Polynomials Polynomials; Add/Subtract Polynomials sounds tough enough. But, if you look at it close enough you ll notice that students have worked with polynomial expressions such as 6x 2 + 5x

More information

POLYNOMIAL EXPRESSIONS PART 1

POLYNOMIAL EXPRESSIONS PART 1 POLYNOMIAL EXPRESSIONS PART 1 A polynomial is an expression that is a sum of one or more terms. Each term consists of one or more variables multiplied by a coefficient. Coefficients can be negative, so

More information

3.4 Pascal s Pride. A Solidify Understanding Task

3.4 Pascal s Pride. A Solidify Understanding Task 3.4 Pascal s Pride A Solidify Understanding Task Multiplying polynomials can require a bit of skill in the algebra department, but since polynomials are structured like numbers, multiplication works very

More information

5.3. Polynomials and Polynomial Functions

5.3. Polynomials and Polynomial Functions 5.3 Polynomials and Polynomial Functions Polynomial Vocabulary Term a number or a product of a number and variables raised to powers Coefficient numerical factor of a term Constant term which is only a

More information

Math 101 Review of SOME Topics

Math 101 Review of SOME Topics Math 101 Review of SOME Topics Spring 007 Mehmet Haluk Şengün May 16, 007 1 BASICS 1.1 Fractions I know you all learned all this years ago, but I will still go over it... Take a fraction, say 7. You can

More information

Read the following definitions and match them with the appropriate example(s) using the lines provided.

Read the following definitions and match them with the appropriate example(s) using the lines provided. Algebraic Expressions Prepared by: Sa diyya Hendrickson Name: Date: Read the following definitions and match them with the appropriate example(s) using the lines provided. 1. Variable: A letter that is

More information

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of

( )( b + c) = ab + ac, but it can also be ( )( a) = ba + ca. Let s use the distributive property on a couple of Factoring Review for Algebra II The saddest thing about not doing well in Algebra II is that almost any math teacher can tell you going into it what s going to trip you up. One of the first things they

More information

Polynomial comes from poly- (meaning "many") and -nomial (in this case meaning "term")... so it says "many terms

Polynomial comes from poly- (meaning many) and -nomial (in this case meaning term)... so it says many terms Polynomials Polynomial comes from poly- (meaning "many") and -nomial (in this case meaning "term")... so it says "many terms Polynomials A polynomial looks like this: Term A number, a variable, or the

More information

Algebra 1: Hutschenreuter Chapter 10 Notes Adding and Subtracting Polynomials

Algebra 1: Hutschenreuter Chapter 10 Notes Adding and Subtracting Polynomials Algebra 1: Hutschenreuter Chapter 10 Notes Name 10.1 Adding and Subtracting Polynomials Polynomial- an expression where terms are being either added and/or subtracted together Ex: 6x 4 + 3x 3 + 5x 2 +

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

5.2 Polynomial Operations

5.2 Polynomial Operations 5.2 Polynomial Operations At times we ll need to perform operations with polynomials. At this level we ll just be adding, subtracting, or multiplying polynomials. Dividing polynomials will happen in future

More information

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions.

To get horizontal and slant asymptotes algebraically we need to know about end behaviour for rational functions. Concepts: Horizontal Asymptotes, Vertical Asymptotes, Slant (Oblique) Asymptotes, Transforming Reciprocal Function, Sketching Rational Functions, Solving Inequalities using Sign Charts. Rational Function

More information

Expanding brackets and factorising

Expanding brackets and factorising Chapter 7 Expanding brackets and factorising This chapter will show you how to expand and simplify expressions with brackets solve equations and inequalities involving brackets factorise by removing a

More information

Math 5a Reading Assignments for Sections

Math 5a Reading Assignments for Sections Math 5a Reading Assignments for Sections 4.1 4.5 Due Dates for Reading Assignments Note: There will be a very short online reading quiz (WebWork) on each reading assignment due one hour before class on

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

A-Level Notes CORE 1

A-Level Notes CORE 1 A-Level Notes CORE 1 Basic algebra Glossary Coefficient For example, in the expression x³ 3x² x + 4, the coefficient of x³ is, the coefficient of x² is 3, and the coefficient of x is 1. (The final 4 is

More information

What if the characteristic equation has complex roots?

What if the characteristic equation has complex roots? MA 360 Lecture 18 - Summary of Recurrence Relations (cont. and Binomial Stuff Thursday, November 13, 01. Objectives: Examples of Recurrence relation solutions, Pascal s triangle. A quadratic equation What

More information

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests:

One sided tests. An example of a two sided alternative is what we ve been using for our two sample tests: One sided tests So far all of our tests have been two sided. While this may be a bit easier to understand, this is often not the best way to do a hypothesis test. One simple thing that we can do to get

More information

Algebra 2 Summer Work Packet Review and Study Guide

Algebra 2 Summer Work Packet Review and Study Guide Algebra Summer Work Packet Review and Study Guide This study guide is designed to accompany the Algebra Summer Work Packet. Its purpose is to offer a review of the nine specific concepts covered in the

More information

19. TAYLOR SERIES AND TECHNIQUES

19. TAYLOR SERIES AND TECHNIQUES 19. TAYLOR SERIES AND TECHNIQUES Taylor polynomials can be generated for a given function through a certain linear combination of its derivatives. The idea is that we can approximate a function by a polynomial,

More information

εx 2 + x 1 = 0. (2) Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives x 1 = 0,

εx 2 + x 1 = 0. (2) Suppose we try a regular perturbation expansion on it. Setting ε = 0 gives x 1 = 0, 4 Rescaling In this section we ll look at one of the reasons that our ε = 0 system might not have enough solutions, and introduce a tool that is fundamental to all perturbation systems. We ll start with

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions.

Partial Fractions. June 27, In this section, we will learn to integrate another class of functions: the rational functions. Partial Fractions June 7, 04 In this section, we will learn to integrate another class of functions: the rational functions. Definition. A rational function is a fraction of two polynomials. For example,

More information

Solving with Absolute Value

Solving with Absolute Value Solving with Absolute Value Who knew two little lines could cause so much trouble? Ask someone to solve the equation 3x 2 = 7 and they ll say No problem! Add just two little lines, and ask them to solve

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 9 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

Geometry 21 Summer Work Packet Review and Study Guide

Geometry 21 Summer Work Packet Review and Study Guide Geometry Summer Work Packet Review and Study Guide This study guide is designed to accompany the Geometry Summer Work Packet. Its purpose is to offer a review of the ten specific concepts covered in the

More information

Core 1 Module Revision Sheet J MS. 1. Basic Algebra

Core 1 Module Revision Sheet J MS. 1. Basic Algebra Core 1 Module Revision Sheet The C1 exam is 1 hour 0 minutes long and is in two sections Section A (6 marks) 8 10 short questions worth no more than 5 marks each Section B (6 marks) questions worth 12

More information

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this.

Calculus II. Calculus II tends to be a very difficult course for many students. There are many reasons for this. Preface Here are my online notes for my Calculus II course that I teach here at Lamar University. Despite the fact that these are my class notes they should be accessible to anyone wanting to learn Calculus

More information

Difference Equations

Difference Equations 6.08, Spring Semester, 007 Lecture 5 Notes MASSACHVSETTS INSTITVTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.08 Introduction to EECS I Spring Semester, 007 Lecture 5 Notes

More information

Algebra & Trig Review

Algebra & Trig Review Algebra & Trig Review 1 Algebra & Trig Review This review was originally written for my Calculus I class, but it should be accessible to anyone needing a review in some basic algebra and trig topics. The

More information

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed.

Algebra. Here are a couple of warnings to my students who may be here to get a copy of what happened on a day that you missed. This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Algebra Exam. Solutions and Grading Guide

Algebra Exam. Solutions and Grading Guide Algebra Exam Solutions and Grading Guide You should use this grading guide to carefully grade your own exam, trying to be as objective as possible about what score the TAs would give your responses. Full

More information

2, or x 5, 3 x 0, x 2

2, or x 5, 3 x 0, x 2 Pre-AP Algebra 2 Lesson 2 End Behavior and Polynomial Inequalities Objectives: Students will be able to: use a number line model to sketch polynomials that have repeated roots. use a number line model

More information

Probability and the Second Law of Thermodynamics

Probability and the Second Law of Thermodynamics Probability and the Second Law of Thermodynamics Stephen R. Addison January 24, 200 Introduction Over the next several class periods we will be reviewing the basic results of probability and relating probability

More information

CH 66 COMPLETE FACTORING

CH 66 COMPLETE FACTORING CH 66 COMPLETE FACTORING THE CONCEPT OF COMPLETE FACTORING C onsider the task of factoring 8x + 1x. Even though is a common factor, and even though x is a common factor, neither of them is the GCF, the

More information

Section 6.6 Evaluating Polynomial Functions

Section 6.6 Evaluating Polynomial Functions Name: Period: Section 6.6 Evaluating Polynomial Functions Objective(s): Use synthetic substitution to evaluate polynomials. Essential Question: Homework: Assignment 6.6. #1 5 in the homework packet. Notes:

More information

Lecture : The Chain Rule MTH 124

Lecture : The Chain Rule MTH 124 At this point you may wonder if these derivative rules are some sort of Sisyphean task. Fear not, by the end of the next few lectures we will complete all the differentiation rules needed for this course.

More information

Math Lecture 4 Limit Laws

Math Lecture 4 Limit Laws Math 1060 Lecture 4 Limit Laws Outline Summary of last lecture Limit laws Motivation Limits of constants and the identity function Limits of sums and differences Limits of products Limits of polynomials

More information

5.1 Simplifying Rational Expressions

5.1 Simplifying Rational Expressions 5. Simplifying Rational Expressions Now that we have mastered the process of factoring, in this chapter, we will have to use a great deal of the factoring concepts that we just learned. We begin with the

More information

Chapter Usual types of questions Tips What can go ugly. and, common denominator will be

Chapter Usual types of questions Tips What can go ugly. and, common denominator will be C3 Cheat Sheet Chapter Usual types of questions Tips What can go ugly 1 Algebraic Almost always adding or subtracting Factorise everything in each fraction first. e.g. If denominators Blindly multiplying

More information

Getting Started with Communications Engineering. Rows first, columns second. Remember that. R then C. 1

Getting Started with Communications Engineering. Rows first, columns second. Remember that. R then C. 1 1 Rows first, columns second. Remember that. R then C. 1 A matrix is a set of real or complex numbers arranged in a rectangular array. They can be any size and shape (provided they are rectangular). A

More information

y = 7x 2 + 2x 7 ( x, f (x)) y = 3x + 6 f (x) = 3( x 3) 2 dy dx = 3 dy dx =14x + 2 dy dy dx = 2x = 6x 18 dx dx = 2ax + b

y = 7x 2 + 2x 7 ( x, f (x)) y = 3x + 6 f (x) = 3( x 3) 2 dy dx = 3 dy dx =14x + 2 dy dy dx = 2x = 6x 18 dx dx = 2ax + b Rates of hange III Differentiation Workbook Limits For question, 1., draw up a artesian plane and plot your point [( x + h), f ( x + h) ] ( x, f (x)), and your point and visualise how the limit from first

More information

Calculus with business applications, Lehigh U, Lecture 03 notes Summer

Calculus with business applications, Lehigh U, Lecture 03 notes Summer Calculus with business applications, Lehigh U, Lecture 03 notes Summer 01 1 Lines and quadratics 1. Polynomials, functions in which each term is a positive integer power of the independent variable include

More information

Conceptual Explanations: Radicals

Conceptual Explanations: Radicals Conceptual Eplanations: Radicals The concept of a radical (or root) is a familiar one, and was reviewed in the conceptual eplanation of logarithms in the previous chapter. In this chapter, we are going

More information

Algebra Year 10. Language

Algebra Year 10. Language Algebra Year 10 Introduction In Algebra we do Maths with numbers, but some of those numbers are not known. They are represented with letters, and called unknowns, variables or, most formally, literals.

More information

Polynomial and Synthetic Division

Polynomial and Synthetic Division Polynomial and Synthetic Division Polynomial Division Polynomial Division is very similar to long division. Example: 3x 3 5x 3x 10x 1 3 Polynomial Division 3x 1 x 3x 3 3 x 5x 3x x 6x 4 10x 10x 7 3 x 1

More information

Algebra I Polynomials

Algebra I Polynomials Slide 1 / 217 Slide 2 / 217 Algebra I Polynomials 2014-04-24 www.njctl.org Slide 3 / 217 Table of Contents Definitions of Monomials, Polynomials and Degrees Adding and Subtracting Polynomials Multiplying

More information

Getting Started with Communications Engineering

Getting Started with Communications Engineering 1 Linear algebra is the algebra of linear equations: the term linear being used in the same sense as in linear functions, such as: which is the equation of a straight line. y ax c (0.1) Of course, if we

More information

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n =

Hypothesis testing I. - In particular, we are talking about statistical hypotheses. [get everyone s finger length!] n = Hypothesis testing I I. What is hypothesis testing? [Note we re temporarily bouncing around in the book a lot! Things will settle down again in a week or so] - Exactly what it says. We develop a hypothesis,

More information

STEP Support Programme. Pure STEP 1 Questions

STEP Support Programme. Pure STEP 1 Questions STEP Support Programme Pure STEP 1 Questions 2012 S1 Q4 1 Preparation Find the equation of the tangent to the curve y = x at the point where x = 4. Recall that x means the positive square root. Solve the

More information

To Find the Product of Monomials. ax m bx n abx m n. Let s look at an example in which we multiply two monomials. (3x 2 y)(2x 3 y 5 )

To Find the Product of Monomials. ax m bx n abx m n. Let s look at an example in which we multiply two monomials. (3x 2 y)(2x 3 y 5 ) 5.4 E x a m p l e 1 362SECTION 5.4 OBJECTIVES 1. Find the product of a monomial and a polynomial 2. Find the product of two polynomials 3. Square a polynomial 4. Find the product of two binomials that

More information

Bridging the gap between GCSE and A level mathematics

Bridging the gap between GCSE and A level mathematics Bridging the gap between GCSE and A level mathematics This booklet is designed to help you revise important algebra topics from GCSE and make the transition from GCSE to A level a smooth one. You are advised

More information

IES Parque Lineal - 2º ESO

IES Parque Lineal - 2º ESO UNIT5. ALGEBRA Contenido 1. Algebraic expressions.... 1 Worksheet: algebraic expressions.... 2 2. Monomials.... 3 Worksheet: monomials.... 5 3. Polynomials... 6 Worksheet: polynomials... 9 4. Factorising....

More information

Systems of equation and matrices

Systems of equation and matrices Systems of equation and matrices Jean-Luc Bouchot jean-luc.bouchot@drexel.edu February 23, 2013 Warning This is a work in progress. I can not ensure it to be mistake free at the moment. It is also lacking

More information

Physics 331 Introduction to Numerical Techniques in Physics

Physics 331 Introduction to Numerical Techniques in Physics Physics 331 Introduction to Numerical Techniques in Physics Instructor: Joaquín Drut Lecture 12 Last time: Polynomial interpolation: basics; Lagrange interpolation. Today: Quick review. Formal properties.

More information

Math 2 Variable Manipulation Part 3 Polynomials A

Math 2 Variable Manipulation Part 3 Polynomials A Math 2 Variable Manipulation Part 3 Polynomials A 1 MATH 1 REVIEW: VOCABULARY Constant: A term that does not have a variable is called a constant. Example: the number 5 is a constant because it does not

More information

1 GSW Sets of Systems

1 GSW Sets of Systems 1 Often, we have to solve a whole series of sets of simultaneous equations of the form y Ax, all of which have the same matrix A, but each of which has a different known vector y, and a different unknown

More information

P1 Chapter 1 :: Algebraic Expressions

P1 Chapter 1 :: Algebraic Expressions P1 Chapter 1 :: Algebraic Expressions jfrost@tiffin.kingston.sch.uk www.drfrostmaths.com @DrFrostMaths Last modified: 26 th August 2017 Use of DrFrostMaths for practice Register for free at: www.drfrostmaths.com/homework

More information

We will work with two important rules for radicals. We will write them for square roots but they work for any root (cube root, fourth root, etc.).

We will work with two important rules for radicals. We will write them for square roots but they work for any root (cube root, fourth root, etc.). College algebra We will review simplifying radicals, exponents and their rules, multiplying polynomials, factoring polynomials, greatest common denominators, and solving rational equations. Pre-requisite

More information

An Introduction to Proofs in Mathematics

An Introduction to Proofs in Mathematics An Introduction to Proofs in Mathematics The subject of mathematics is often regarded as a pinnacle in the achievement of human reasoning. The reason that mathematics is so highly regarded in the realm

More information

2 P a g e. Essential Questions:

2 P a g e. Essential Questions: NC Math 1 Unit 5 Quadratic Functions Main Concepts Study Guide & Vocabulary Classifying, Adding, & Subtracting Polynomials Multiplying Polynomials Factoring Polynomials Review of Multiplying and Factoring

More information

Lesson 6-1: Relations and Functions

Lesson 6-1: Relations and Functions I ll bet you think numbers are pretty boring, don t you? I ll bet you think numbers have no life. For instance, numbers don t have relationships do they? And if you had no relationships, life would be

More information

Factors of Polynomials Factoring For Experts

Factors of Polynomials Factoring For Experts Factors of Polynomials SUGGESTED LEARNING STRATEGIES: Shared Reading, Activating Prior Knowledge, Discussion Group, Note-taking When you factor a polynomial, you rewrite the original polynomial as a product

More information

Statistics 1L03 - Midterm #2 Review

Statistics 1L03 - Midterm #2 Review Statistics 1L03 - Midterm # Review Atinder Bharaj Made with L A TEX October, 01 Introduction As many of you will soon find out, I will not be holding the next midterm review. To make it a bit easier on

More information

Partial Fraction Decomposition

Partial Fraction Decomposition Partial Fraction Decomposition As algebra students we have learned how to add and subtract fractions such as the one show below, but we probably have not been taught how to break the answer back apart

More information

Linear Algebra, Summer 2011, pt. 2

Linear Algebra, Summer 2011, pt. 2 Linear Algebra, Summer 2, pt. 2 June 8, 2 Contents Inverses. 2 Vector Spaces. 3 2. Examples of vector spaces..................... 3 2.2 The column space......................... 6 2.3 The null space...........................

More information

Solving Quadratic & Higher Degree Equations

Solving Quadratic & Higher Degree Equations Chapter 7 Solving Quadratic & Higher Degree Equations Sec 1. Zero Product Property Back in the third grade students were taught when they multiplied a number by zero, the product would be zero. In algebra,

More information

Gradient. x y x h = x 2 + 2h x + h 2 GRADIENTS BY FORMULA. GRADIENT AT THE POINT (x, y)

Gradient. x y x h = x 2 + 2h x + h 2 GRADIENTS BY FORMULA. GRADIENT AT THE POINT (x, y) GRADIENTS BY FORMULA GRADIENT AT THE POINT (x, y) Now let s see about getting a formula for the gradient, given that the formula for y is y x. Start at the point A (x, y), where y x. Increase the x coordinate

More information

UNIT 2 FACTORING. M2 Ch 11 all

UNIT 2 FACTORING. M2 Ch 11 all UNIT 2 FACTORING M2 Ch 11 all 2.1 Polynomials Objective I will be able to put polynomials in standard form and identify their degree and type. I will be able to add and subtract polynomials. Vocabulary

More information

Chapter 1. Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring

Chapter 1. Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring In This Chapter Chapter 1 Making Advances in Algebra Making algebra orderly with the order of operations and other properties Enlisting rules of exponents Focusing on factoring Algebra is a branch of mathematics

More information

MS 2001: Test 1 B Solutions

MS 2001: Test 1 B Solutions MS 2001: Test 1 B Solutions Name: Student Number: Answer all questions. Marks may be lost if necessary work is not clearly shown. Remarks by me in italics and would not be required in a test - J.P. Question

More information

Lecture 10: Powers of Matrices, Difference Equations

Lecture 10: Powers of Matrices, Difference Equations Lecture 10: Powers of Matrices, Difference Equations Difference Equations A difference equation, also sometimes called a recurrence equation is an equation that defines a sequence recursively, i.e. each

More information

( ) is called the dependent variable because its

( ) is called the dependent variable because its page 1 of 16 CLASS NOTES: 3 8 thru 4 3 and 11 7 Functions, Exponents and Polynomials 3 8: Function Notation A function is a correspondence between two sets, the domain (x) and the range (y). An example

More information

Math 131, Lecture 20: The Chain Rule, continued

Math 131, Lecture 20: The Chain Rule, continued Math 131, Lecture 20: The Chain Rule, continued Charles Staats Friday, 11 November 2011 1 A couple notes on quizzes I have a couple more notes inspired by the quizzes. 1.1 Concerning δ-ε proofs First,

More information

Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS

Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS Sections 7.1, 7.2: Sums, differences, products of polynomials CHAPTER 7: POLYNOMIALS Quiz results Average 73%: high h score 100% Problems: Keeping track of negative signs x = + = + Function notation f(x)

More information

Differential Equations

Differential Equations This document was written and copyrighted by Paul Dawkins. Use of this document and its online version is governed by the Terms and Conditions of Use located at. The online version of this document is

More information

Roots of quadratic equations

Roots of quadratic equations CHAPTER Roots of quadratic equations Learning objectives After studying this chapter, you should: know the relationships between the sum and product of the roots of a quadratic equation and the coefficients

More information

Chapter 1. Root Finding Methods. 1.1 Bisection method

Chapter 1. Root Finding Methods. 1.1 Bisection method Chapter 1 Root Finding Methods We begin by considering numerical solutions to the problem f(x) = 0 (1.1) Although the problem above is simple to state it is not always easy to solve analytically. This

More information

9.5 Radical Equations

9.5 Radical Equations Section 9.5 Radical Equations 945 9.5 Radical Equations In this section we are going to solve equations that contain one or more radical expressions. In the case where we can isolate the radical expression

More information

Algebra I. Polynomials.

Algebra I. Polynomials. 1 Algebra I Polynomials 2015 11 02 www.njctl.org 2 Table of Contents Definitions of Monomials, Polynomials and Degrees Adding and Subtracting Polynomials Multiplying a Polynomial by a Monomial Multiplying

More information

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers

Chapter 1A -- Real Numbers. iff. Math Symbols: Sets of Numbers Fry Texas A&M University! Fall 2016! Math 150 Notes! Section 1A! Page 1 Chapter 1A -- Real Numbers Math Symbols: iff or Example: Let A = {2, 4, 6, 8, 10, 12, 14, 16,...} and let B = {3, 6, 9, 12, 15, 18,

More information

Pre-Algebra 2. Unit 9. Polynomials Name Period

Pre-Algebra 2. Unit 9. Polynomials Name Period Pre-Algebra Unit 9 Polynomials Name Period 9.1A Add, Subtract, and Multiplying Polynomials (non-complex) Explain Add the following polynomials: 1) ( ) ( ) ) ( ) ( ) Subtract the following polynomials:

More information

Just DOS Difference of Perfect Squares. Now the directions say solve or find the real number solutions :

Just DOS Difference of Perfect Squares. Now the directions say solve or find the real number solutions : 5.4 FACTORING AND SOLVING POLYNOMIAL EQUATIONS To help you with #1-1 THESE BINOMIALS ARE EITHER GCF, DOS, OR BOTH!!!! Just GCF Just DOS Difference of Perfect Squares Both 1. Break each piece down.. Pull

More information

For the given equation, first find the x-intercept by setting y = 0: Next, find the y-intercept by setting x = 0:

For the given equation, first find the x-intercept by setting y = 0: Next, find the y-intercept by setting x = 0: 1. Find the x- and y-intercepts and graph the equation. 5x + 6y = 30 To find the x- and y-intercepts, set one variable equal to 0, and solve for the other variable. To find the x-intercept, set y = 0 and

More information

CH 61 USING THE GCF IN EQUATIONS AND FORMULAS

CH 61 USING THE GCF IN EQUATIONS AND FORMULAS CH 61 USING THE GCF IN EQUATIONS AND FORMULAS Introduction A while back we studied the Quadratic Formula and used it to solve quadratic equations such as x 5x + 6 = 0; we were also able to solve rectangle

More information

DON ROBERT B. ESTRELLA SR. NATIONAL HIGH SCHOOL Nagsaag, San Manuel, Pangasinan. (Effective Alternative Secondary Education) MATHEMATICS II

DON ROBERT B. ESTRELLA SR. NATIONAL HIGH SCHOOL Nagsaag, San Manuel, Pangasinan. (Effective Alternative Secondary Education) MATHEMATICS II DON ROBERT B. ESTRELLA SR. NATIONAL HIGH SCHOOL Nagsaag, San Manuel, Pangasinan. (Effective Alternative Secondary Education) MATHEMATICS II Y X MODULE 1 Quadratic Equations BUREAU OF SECONDARY EDUCATION

More information

Math 155 Prerequisite Review Handout

Math 155 Prerequisite Review Handout Math 155 Prerequisite Review Handout August 23, 2010 Contents 1 Basic Mathematical Operations 2 1.1 Examples...................................... 2 1.2 Exercises.......................................

More information

CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics

CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics SCHOLAR Study Guide CfE Higher Mathematics Course Materials Topic 4: Polynomials and quadratics Authored by: Margaret Ferguson Reviewed by: Jillian Hornby Previously authored by: Jane S Paterson Dorothy

More information

An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai. Unit - I Polynomials Lecture 1B Long Division

An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai. Unit - I Polynomials Lecture 1B Long Division An Invitation to Mathematics Prof. Sankaran Vishwanath Institute of Mathematical Science, Chennai Unit - I Polynomials Lecture 1B Long Division (Refer Slide Time: 00:19) We have looked at three things

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software

Practical Algebra. A Step-by-step Approach. Brought to you by Softmath, producers of Algebrator Software Practical Algebra A Step-by-step Approach Brought to you by Softmath, producers of Algebrator Software 2 Algebra e-book Table of Contents Chapter 1 Algebraic expressions 5 1 Collecting... like terms 5

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Quadratic Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Quadratic Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 018/019 DR ANTHONY BROWN 31 Graphs of Quadratic Functions 3 Quadratic Equations In Chapter we looked at straight lines,

More information

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions

Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions Math 111, Introduction to the Calculus, Fall 2011 Midterm I Practice Exam 1 Solutions For each question, there is a model solution (showing you the level of detail I expect on the exam) and then below

More information

Important. Need a more in depth preview? Get ALL the premium chapter 1 tutorials FREE

Important. Need a more in depth preview? Get ALL the premium chapter 1 tutorials FREE MATH1505.com We Make Math Easy. PREVIEW Homework ~ Tutorials ~ Past Tests Important Math 1505 is a HUGE course. Many students fear the course, but you don t need to, you ve got us! Your keys to success

More information

September 12, Math Analysis Ch 1 Review Solutions. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = x = x = 10.

September 12, Math Analysis Ch 1 Review Solutions. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = x = x = 10. #1. 8x + 10 = 4x 30 4x 4x 4x + 10 = 30 10 10 4x = 40 4 4 x = 10 Sep 5 7:00 AM 1 #. 4 3(x + ) = 5x 7(4 x) 4 3x 6 = 5x 8 + 7x CLT 3x = 1x 8 +3x +3x = 15x 8 +8 +8 6 = 15x 15 15 x = 6 15 Sep 5 7:00 AM #3.

More information

Computer Problems for Fourier Series and Transforms

Computer Problems for Fourier Series and Transforms Computer Problems for Fourier Series and Transforms 1. Square waves are frequently used in electronics and signal processing. An example is shown below. 1 π < x < 0 1 0 < x < π y(x) = 1 π < x < 2π... and

More information