The Control of a Continuously Operated Pole-Changing Induction Machine

Similar documents
Unified Torque Expressions of AC Machines. Qian Wu

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Lecture 9: Space-Vector Models

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

Lecture 1: Induction Motor

Comparative Analysis of Speed Control of Induction Motor by DTC over Scalar Control Technique

Synchronous Machine Modeling

International Journal of Advance Engineering and Research Development

Chapter 5 Three phase induction machine (1) Shengnan Li

A Multirate Field Construction Technique for Efficient Modeling of the Fields and Forces within Inverter-Fed Induction Machines

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

INDUCTION MOTOR MODEL AND PARAMETERS

Performance analysis of variable speed multiphase induction motor with pole phase modulation

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

2016 Kappa Electronics Motor Control Training Series Kappa Electronics LLC. -V th. Dave Wilson Co-Owner Kappa Electronics.

Lecture Set 8 Induction Machines

Step Motor Modeling. Step Motor Modeling K. Craig 1

REAL TIME CONTROL OF DOUBLY FED INDUCTION GENERATOR. Benmeziane Meriem, Zebirate Soraya, Chaker Abelkader Laboratory SCAMRE, ENPO, Oran, Algeria

Digital Control of Electric Drives. Induction Motor Vector Control. Czech Technical University in Prague Faculty of Electrical Engineering

A Novel Three-phase Matrix Converter Based Induction Motor Drive Using Power Factor Control

STUDY OF INDUCTION MOTOR DRIVE WITH DIRECT TORQUE CONTROL SCHEME AND INDIRECT FIELD ORIENTED CONTROL SCHEME USING SPACE VECTOR MODULATION

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

Three phase induction motor using direct torque control by Matlab Simulink

A new FOC technique based on predictive current control for PMSM drive

3-Phase PMSM FOC Control

A Microscopic Investigation of Force Generation in a Permanent Magnet Synchronous Machine

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

PROBLEM SOLUTIONS: Chapter 4

Robust sliding mode speed controller for hybrid SVPWM based direct torque control of induction motor

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Sensorless DTC-SVM of Induction Motor by Applying Two Neural Controllers

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

Analytical Calculation of Air Gap Magnetic Field Distribution in Vernier Motor

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

A Direct Torque Controlled Induction Motor with Variable Hysteresis Band

Lecture 7: Synchronous Motor Drives

EFFICIENCY OPTIMIZATION OF VECTOR-CONTROLLED INDUCTION MOTOR DRIVE

A simple model based control of self excited induction generators over a wide speed range

Design and implementation of a sliding-mode observer of the rotor flux and rotor speed in induction machines

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Chapter 4. Synchronous Generators. Basic Topology

Simulation of 3-Phase 2- Stator Induction Motor Using MATLAB Platform

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion.

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive

HIGH PERFORMANCE CONTROLLERS BASED ON REAL PARAMETERS TO ACCOUNT FOR PARAMETER VARIATIONS DUE TO IRON SATURATION

Measurements of a 37 kw induction motor. Rated values Voltage 400 V Current 72 A Frequency 50 Hz Power 37 kw Connection Star

Modelling and Simulating a Three-Phase Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

Independent Control of Speed and Torque in a Vector Controlled Induction Motor Drive using Predictive Current Controller and SVPWM

An adaptive sliding mode control scheme for induction motor drives

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Internal Model Control Approach to PI Tunning in Vector Control of Induction Motor

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

Generalized Theory of Electrical Machines- A Review

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

Motor-CAD combined electromagnetic and thermal model (January 2015)

DYNAMIC PHASOR MODELING OF DOUBLY-FED INDUCTION MACHINES INCLUDING SATURATION EFFECTS OF MAIN FLUX LINKAGE. Benjamin Braconnier

A Status Review OF IPM MOTOR DRIVES FOR ELECTRIC SUBMERSIBLE PUMP IN HARSH COLD OCEANS

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

Direct torque control of induction motor fed by two level inverter using space vector pulse width modulation

Analysis of Field Oriented Control Strategy for Induction Motor

Matrix converter technology in doubly-fed induction generators for wind generators

COMPARISION BETWEEN TWO LEVEL AND THREE LEVEL INVERTER FOR DIRECT TORQUE CONTROL INDUCTION MOTOR DRIVE

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Permanent Magnet Synchronous Motors (PMSM). Parameters influence on the synchronization process of a PMSM

Novel DTC-SVM for an Adjustable Speed Sensorless Induction Motor Drive

DIRECT TORQUE CONTROL OF THREE PHASE INDUCTION MOTOR USING FUZZY LOGIC

Lecture Set 5 Distributed Windings and Rotating MMF

ON THE PARAMETERS COMPUTATION OF A SINGLE SIDED TRANSVERSE FLUX MOTOR

Steady State Modeling of Doubly Fed Induction Generator

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

A New Predictive Control Strategy Dedicated to Salient Pole Synchronous Machines

Lecture 8: Sensorless Synchronous Motor Drives

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota

Voltage Induced in a Rotating Loop

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Noise and Vibration of Electrical Machines

Electromagnetic Torque From Event Report Data A Measure of Machine Performance

An improved deadbeat predictive current control for permanent magnet linear synchronous motor

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

MODELING AND CONTROL OF DUAL MECHANICAL PORT ELECTRIC MACHINE DISSERTATION

SEMINAR ON ELECTRICAL ENGINEERING, INFORMATICS, AND ITS EDUCATION

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

UJET VOL. 2, NO. 2, DEC Page 8

Estimation of speed in linear induction motor drive by MRAS using neural network and sliding mode control

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL

Department of Energy Tehnology Aalborg University, Denmark. Control of a saturated Permanent Magnet Synchronus Motor

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame

Verification of Nine-phase PMSM Model in d-q Coordinates with Mutual Couplings

SSRG International Journal of Electrical and Electronics Engineering (SSRG-IJEEE) volume 2 Issue 5 May 2015

The synchronous machine (detailed model)

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Transcription:

The Control of a Continuously Operated PoleChanging Induction Machine J.W. Kelly Electrical and Computer Engineering Michigan State University East Lansing, MI 48824 28 February 2002 MD Lab 1/0202 1

Outline Pole Changing Techniques for Induction Machines Reconfigurable Stator Winding Multiple Stator Windings Experimental Induction Machine with a 3:1 Pole Ratio 3phase12pole Configuration 3phase4pole Configuration 9phase4pole Configuration PolePhase Variation MD Lab 1/0202 2

Nine Phase Operation Coordinate Transformation of Machine Variables 9 Phase PWM Techniques Continuous Operation of a Pole Changing Induction Machine Issues During the PoleChanging Transition Proposed Technique for Torque Regulation During PoleChanging Transient Experimental Setup Conclusions MD Lab 1/0202 3

Background 2:1 Polechanging using Reconfigurable Stator Winding Series connected phase coils resulting in 8 poles Mechanical Contactors phasebelt C 1 C 2 C 3 C 4 C 3 C 1 C 4 C 2 3phase Power supply MD Lab 1/0202 4

Seriesparallel connected phase coils resulting in 4 poles Mechanical Contactors phasebelt C 1 C 2 C 3 C 4 C 1 C 3 C 2 C 4 3phase Power supply MD Lab 1/0202 5

3:1 Polechanging using Reconfigurable Stator Winding Delta connected phase coils resulting in 2 poles 60 o Phase Belt phasebelt (Mechanical degrees) 60 o L 1 L 2 L 3 L 5 L 6 L 7 L 8 L 9 L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 a a a c c c b b b a a a c c c b b b L 4 L 9 L 7 L 7 L 8 L 1 L 1 L2 L2 polepitch (Electrical degrees) 180 o L 9 L 8 L 9 L 3 L 3 MD Lab 1/0202 6

Wye connected phase coils resulting in 6 poles 60 o Phase Belt L 1 L 1 L 2 phasebelt (Mechanical degrees) 20 o L 3 L 4 L 5 L 6 L 7 L 8 L 9 L 1 L 2 L 3 L 4 L 5 L 6 L 7 L 8 L 9 a c b a c b a c b a c b a c b a c b L 1 L 7 L 7 L 4 180 o polepitch (Electrical degrees) b L 9 L L 9 6 L L 6 3 L 3 a L 4 c L 8 L 8 L5 L 5 L 2 MD Lab 1/0202 7

Induction Machine with Dual Stator Windings: Lippo and Osama 4 pole configuration two 3phase inverters, 6 winding currents:[i a1,i b1,i c1,i a2,i b2,i c2 ] a aaabbbb b bbbcccc c c ccaaaaaaaabbbb b bbbcccc c c ccaaa a c c c c c c c c a a a a a a a a b b b b b b b b c c c c c c c c a a a a a a a a b b b b b b b b 2 pole configuration two 3phase inverters, 6 winding currents:[i a1,i b1,i c1, i a2, i c2, i b2 ] a aa a c c c c c c c c b b b b b b b b a a aa a aa a c c c c c c c c b b b b b b b b a a a a b b b b b b b b a a a a a a a a c c c c c c c c b b b b b b b b a aa a aa a a c c c c c c c c MD Lab 1/0202 8

Machine Variables Described in Six Dimensional Space Analysis in sixdimensional space too complex V 1 V 2 V 3 V 4 V 5 V 6 = [R][I] d [λ] (1) dt Transformation to Simplify Analysis: One 6D Machine mapped into Two independent machines in 3D V 2q V 2d V 4q V 4d V 02 V 04 = [T] V 1 V 2 V 3 V 4 V 5 V 6 (2) MD Lab 1/0202 9

Use Stator Winding MMF as basis for Transformation I 1 (φ) = I 2 (φ) = I 3 (φ) = I 4 (φ) = I 5 (φ) = I 6 (φ) = N sh cos (h(φ)i a (t)) (3) h=1,2,3... h=1,2,3... h=1,2,3... h=1,2,3... h=1,2,3... h=1,2,3... N sh cos (h(φ π)i a (t)) (4) N sh cos h(φ π 3 )i a(t) (5) N sh cos h(φ 2π 3 )i a(t) (6) N sh cos h(φ 2π 3 )i a(t) (7) N sh cos h(φ π 3 )i a(t) (8) (9) Total MMF of Dual Stator Machine I T otal = I 1 I 2 I 3 I 4 I 4 I 5 I 6 (10) MD Lab 1/0202 10

Total MMF Harmonic Composition (Fourier Series Expansion) I T otal = I fundalmental I 2 nd I 3 rd I 4 th I 5 th I 6 th (11) The 6D machine variables are transformed into two sets of 2D variables. One set is based the MMF fundamental component. These machines describe a 2 pole machine. The other set is based on MMF 2 nd harmonic component. These variables describe a 4 pole machine. The 3 rd harmonic component of the Total MMF defines the 1D zerosequence subspace for the 2 pole machine The 6 rd harmonic component of the Total MMF defines the 1D zerosequence subspace for the 4 pole machine MD Lab 1/0202 11

Transformation Matrix from original six dimensional space to 2 3dimensional subspaces q 4 d 4 q T = 2 = 1 d 2 3 0 4 0 2 1 1 1 1 1 1 2 2 2 2 0 0 3 3 3 3 2 2 2 2 1 1 1 1 1 1 2 2 2 2 0 0 3 3 3 3 2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 2 2 2 2 (12) Transformation Matrix for arbitrary reference frame rotating at θ m T (θm) = 1 3 cos(2θm) cos(2θm) cos(2θm 2π 3 ) cos(2θ m 2π 3 ) cos(2θ m 2π 3 ) cos(2θ m 2π 3 ) sin(2θm) sin(2θm) sin(2θm 2π 3 ) sin(2θ m 2π 3 ) sin(2θ m 2π 3 ) sin(2θ m 2π 3 ) cos(θm) cos(θm) cos(θm 2π 3 ) cos(θ m 2π 3 ) cos(θ m 2π 3 ) cos(θ m 2π 3 ) sin(θm) sin(θm) sin(θm 2π 3 ) sin(θ m 2π 3 ) sin(θ m 2π 3 ) sin(θ m 2π 3 ) 1 2 1 2 1 2 1 2 1 2 1 2 1 1 1 2 1 2 1 1 2 2 2 2 (13) MD Lab 1/0202 12

Transformed Voltage and Flux Linkage Equations v q4s = r s i q4s λ q4s ω 4 λ d4s (14) v d4s = r s i d4s λ d4s ω 4 λ d4s (15) v q2s = r s i q2s λ q2s ω 2 λ d2s (16) v d2s = r s i d2s λ d2s ω 2 λ d2s (17) v 04s = r s i 04s λ 04s (18) v 02s = r s i 02s λ 02s (19) λ q4s = (L m4 L ls )i q4s L m4 i q4r (20) λ d4s = (L m4 L ls )i d4s L m4 i d4r (21) λ q2s = (L m2 L ls )i q2s L m2 i q2r (22) λ d2s = (L m2 L ls )i q2s L m2 i d2r (23) Transformed Torque Equation T e = 2(λ d4s i q4s λ q4s i d4s ) (λ d2s i q2s λ q2s i d2s ) (24) MD Lab 1/0202 13

Experimental 3:1 Pole Induction Machine Winding Diagram 9 Leg Inverter 12p 3phase i A1 i B2 i C3 i A4 i B5 i C6 i A7 i B8 i C9 4p i A1 i A2 i A3 i B4 i B5 i B6 i C7 i C8 i C9 3phase i A1 i B2 i C3 i D4 i E5 i F6 i G7 i H8 i I9 4p 9phase MD Lab 1/0202 14

3phase12pole Configuration phasebelt 10 o a c' b a' c b' a c' b a' c b' a c' b a' c b' a c' b a' c b' a c' b a' c b' a c' b a' c b' 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o 0 o 60 o 120 o 180 o 240 o 300 o Ni 3phase4pole Configuration phasebelt 30 o a a' a c' c c' b b' b a' a a' c c' c b' b b' 0 o 180 o 0 o 60 o 240 o 60 o 120 o 300 o 120 o 180 o 0 o 180 o 240 o 60 o 240 o 300 o 120 o 120 o a a' a c' c c' b b' b a' a a' c c' c b' b b' 0 o 180 o 0 o 60 o 240 o 60 o 120 o 300 o 120 o 180 o 0 o 180 o 240 o 60 o 240 o 300 o 120 o 120 o Ni 9phase4pole Configuration phasebelt 10 o a f' b g' c h' d i' e a' f b' g c' h d' i e' 0 o 20 o 40 o 60 o 80 o 100 o 120 o 140 o 160 o 180 o 200 o 220 o 240 o 260 o 280 o 300 o 320 o 340 o a f' b g' c h' d i' e a' f b' g c' h d' i e' 0 o 20 o 40 o 60 o 80 o 100 o 120 o 140 o 160 o 180 o 200 o 220 o 240 o 260 o 280 o 300 o 320 o 340 o Ni MD Lab 1/0202 15

3phase4pole vs 9phase4pole MMF MMF 9 phase for one complete electrical cycle 150 100 50 200 0 0 200 400 50 300 100 200 80 150 0 10 20 30 40 50 60 70 slots degrees 100 0 0 20 40 slots 60 MMF 3 phase for one complete electrical cycle 150 200 100 0 50 50 100 0 150 0 10 20 30 40 50 60 70 slots 200 400 350 300 250 200 150 100 degrees 50 0 0 20 slots 40 60 80 MD Lab 1/0202 16

9 Phase Operation Coordinate Transformation 9 dimensional machine variables too complex, transform to 2D space (for conventional Field Orientation Control) Transformation from 9 to 2 dimensions is over defined Transformation from 2 to 9 dimensions is under defined Add Constraints in order to make transformation unique MD Lab 1/0202 17

Define a new 9D coordinate system consisting of three 3phase coordinate systems, rotated 40 o wrt to each other Map 1 3 of the 2D space vector into each 3phase system 2 to 9 transformation fq fas 1 0 1 0 0 0 0 0 0 3 f bs 0 0 0 cos(α 2π 9 ) sin(α 2π 9 ) 1 0 0 0 f d3 fcs 0 0 0 0 0 0 cos(α 4π f 9 ) sin(α 4π 9 ) 1 f o ds fes = 3 cos(α 6π 9 ) sin(α 6π 3 9 ) 1 0 0 0 0 0 0 f q 0 0 0 cos(α 2 8π 9 ) sin(α 8π 3 9 ) 1 0 0 0 f d3 f fs 0 0 0 0 0 0 cos(α 10π ) sin(α 10π 9 9 ) 1 f o fgs cos(α 12π 3 ) sin(α 12π 9 9 ) 1 0 0 0 0 0 0 f q f hs 0 0 0 cos(α 14π ) sin(α 14π 9 9 ) 1 0 0 0 3 f d3 f is 0 0 0 0 0 0 cos(α 16π ) sin(α 16π 9 9 ) 1 f o 3 (25) MD Lab 1/0202 18

9 to 2 transformation f q1 cos(α) 0 0 cos(α 2π 3 ) 0 0 cos(α 2π 3 ) 0 f d1 sin(α) 0 0 sin(α 2π 3 ) 0 0 sin(α 2π 3 ) 0 f o1 1 0 0 1 0 0 1 0 f 2 2 2 q2 f d2 = 2 0 cos(α 2π 9 ) 0 0 cos(α 8π 9 ) 0 0 cos(α 8π 9 ) 0 sin(α 9 2π 9 ) 0 0 sin(α 8π 9 ) 0 0 sin(α 8π 9 ) f o2 0 1 0 0 1 0 0 1 2 2 2 f q3 0 0 cos(α 4π ) 0 0 cos(α 10π 9 9 ) 0 0 cos(α f d3 0 0 sin(α 4π ) 0 0 sin(α 10π 9 9 ) 0 0 sin(α f o3 0 0 1 0 0 1 0 0 2 2 (26) MD Lab 1/0202 19

Realization of a 9D Space Vector Voltage Command Via Pulse Width Modulation (PWM) 512 possible space vectors from a 9leg inverter NinephaseVoltage Space Vectors j0.6 Vdc j0.4 Vdc j0.2 Vdc 0 j0.2 Vdc j0.4 Vdc j0.6 Vdc 0.6 Vdc 0.4 Vdc 0.2 Vdc 0 0.2 Vdc 0.6 Vdc 0.4 Vdc MD Lab 1/0202 20

Extending 3phase Space Vector PWM algorithm for 9phase Space Vector PWM Only 72 space vectors are used V n, offset = max V 1 V dc... V n V dc min V 1 V dc... V n V dc (27) {V45 max} {V36 max} {V27 max} {V18 max} MD Lab 1/0202 21

A new SVPWM for n > 3 nphase Systems The Minimum Voltage Difference SVPWM Technique 110111111 000000010 111011111 000000001 00000110 100011111 000000010 000000110 110011111 110111111 110111111 110011111 000000110 000000010 00000011 000001111 000000111 000001111 100001111 100011111 100011111 100001111 000001111 000000110 000000111 000000111 100011111 110011111 110011111 100011111 000000111 100000111 000000111 100001111 000000110 110001111 000000011 110001111 000000111 100001111 110001111 110011111 100000111 110011111 000000111 000000010 110001111 000000011 000000111 110011111 000000011 111011111 111011111 110011111 100000011 000000011 100000111 000000011 000000010 110000111 100000011 000000001 110001111 110001111 000000011 110001111 111001111 111001111 110000111 111001111 111011111 110001111 100000111 111011111 100000011 111001111 100000011 000000011 000000011 111001111000000001 100000011 110000111 110011111 00000111 100001111 110001111 100000111 MD Lab 1/0202 22

Proposal: The Control of a Continuously Operated PoleChanging Induction Machine Goals: Decrease the Torque reduction during the polechanging transition Preserve Control during the polechanging transition MD Lab 1/0202 23

Comparison of 4 pole and 12 pole Stator Current Densities 4 pole Stator Current Density 0 12 pole Stator Current Density 0 1 2 3 4 5 6 7 radians: Stators Circumference MD Lab 1/0202 24

MD Lab 1/0202 25 Interaction between the Stator Current Density and airgap flux results in a tangential force on the rotor df dθ = B gk s (t, θ) (28) 4 pole steady state operation Tangential Force K s B grotor 0 K s stator current B g airgap flux from rotor currents 0 1 2 3 4 5 6 7 radians Transition from 12 poles to 4 poles Tangential Force K s B grotor K s stator current B g airgap flux from rotor currents 0 0 1 2 3 4 5 6 7 radians

Approach: Via a coordinate transformation, decouple the machine into two (possibly three) independent machines Regulate the two independent torques in order to pole change Control each machine separately MD Lab 1/0202 26

Experimental Setup: A/D quadature Inputs position sensor Control Program i a PIII 600MHz RTLinux 3.0 FPGA I/O board 9Leg Inverter torque sensor Dynamometer SVPWM & Communication i i 9 Winding IM MD Lab 1/0202 27

Speedtorque curves for the 12 pole and 4 pole configurations 45 40 35 30 3phase 12pole Motor Nm 25 20 15 9phase 4pole Motor 10 5 0 0 100 200 300 400 500 600 700 800 rpm Figure 1: Speedtorque curves for 12 pole and 4 pole configurations MD Lab 1/0202 28

Speed control: 3phase12pole Induction motor Space Vector Field Orientation Control 3phase SVPWM 700 600 500 400 rpms 300 200 100 0 0 50 100 150 seconds Figure 2: Speedtorque curves for 12 pole and 4 pole configurations MD Lab 1/0202 29

Conclusions: A variety of pole changing technique exists There are no techniques for regulating torque during the polechanging transition Issues during the polechanging transition: reduction in torque flux and torque tracking) Requirements for a method to decrease torque reduction during the polechanging transition and preserve control: New PWM scheme Modelling the machine as two independent machines Develop method to analyze a polechanging machine in terms of Field Orientation Transformation MD Lab 1/0202 30