The use of microwave radiometer data for characterizing snow storage in western China

Similar documents
Discritnination of a wet snow cover using passive tnicrowa ve satellite data

Studying snow cover in European Russia with the use of remote sensing methods

Validation of passive microwave snow algorithms

ELEVATION ANGULAR DEPENDENCE OF WIDEBAND AUTOCORRELATION RADIOMETRIC (WIBAR) REMOTE SENSING OF DRY SNOWPACK AND LAKE ICEPACK

SIMULATION OF SPACEBORNE MICROWAVE RADIOMETER MEASUREMENTS OF SNOW COVER FROM IN-SITU DATA AND EMISSION MODELS

Prospects of microwave remote sensing for snow hydrology

Sea ice concentration off Dronning Maud Land, Antarctica

ESTIMATING SNOWMELT CONTRIBUTION FROM THE GANGOTRI GLACIER CATCHMENT INTO THE BHAGIRATHI RIVER, INDIA ABSTRACT INTRODUCTION

Snow depth derived from passive microwave remote-sensing data in China

Advancing Remote-Sensing Methods for Monitoring Geophysical Parameters

Monitoring the frozen duration of Qinghai Lake using satellite passive microwave remote sensing low frequency data

Research progress of snow cover and its influence on China climate

Preliminary Runoff Outlook February 2018

Remote Sensing of Precipitation

Passive Microwave Sea Ice Concentration Climate Data Record

HeD1ispheric snow cover frod1 satellites

Remote Sensing of SWE in Canada

Analysis of Antarctic Sea Ice Extent based on NIC and AMSR-E data Burcu Cicek and Penelope Wagner

Modelling runoff from large glacierized basins in the Karakoram Himalaya using remote sensing of the transient snowline

A Microwave Snow Emissivity Model

HyMet Company. Streamflow and Energy Generation Forecasting Model Columbia River Basin

Basic Hydrologic Science Course Understanding the Hydrologic Cycle Section Six: Snowpack and Snowmelt Produced by The COMET Program

Central Asia Regional Flash Flood Guidance System 4-6 October Hydrologic Research Center A Nonprofit, Public-Benefit Corporation

Correcting Microwave Precipitation Retrievals for near- Surface Evaporation

Description of Snow Depth Retrieval Algorithm for ADEOS II AMSR

Passive Microwave Physics & Basics. Edward Kim NASA/GSFC

Cloud type climatology over the Tibetan Plateau: A comparison of ISCCP and MODIS/TERRA measurements with surface observations

Determination of the NDSI index and cloud mask algorithm (The Case Study: Sepidan Region, Iran)

Estimation of snow surface temperature for NW Himalayan regions using passive microwave satellite data

APPLICATION OF SATELLITE MICROWAVE IMAGES IN ESTIMATING SNOW WATER EQUIVALENT 1

Assimilation of satellite derived soil moisture for weather forecasting

Spatial and Temporal Variability of Snow Depth Derived from Passive Microwave Remote Sensing Data in Kazakhstan

Microwave Remote Sensing of Sea Ice

Remote Sensing of Precipitation on the Tibetan Plateau Using the TRMM Microwave Imager

We greatly appreciate the thoughtful comments from the reviewers. According to the reviewer s comments, we revised the original manuscript.

Meteorological Satellite Image Interpretations, Part III. Acknowledgement: Dr. S. Kidder at Colorado State Univ.

Inter-linkage case study in Pakistan

Study of emissivity of dry and wet loamy sand soil at microwave frequencies

RETRIEVAL OF SOIL MOISTURE OVER SOUTH AMERICA DERIVED FROM MICROWAVE OBSERVATIONS

Prediction of Snow Water Equivalent in the Snake River Basin

F O U N D A T I O N A L C O U R S E

Water cycle changes during the past 50 years over the Tibetan Plateau: review and synthesis

SOIL MOISTURE MAPPING THE SOUTHERN U.S. WITH THE TRMM MICROWAVE IMAGER: PATHFINDER STUDY

A Comparison of A MSR-E/Aqua Snow Products with in situ Observations and M O DIS Snow Cover Products in the Mackenzie River Basin, Canada

Energy and Mass Balance Snow Model. Department of Civil and Environmental Engineering University of Washington

A Comparison of Clear-Sky Emission Models with Data Taken During the 1999 Millimeter-Wave Radiometric Arctic Winter Water Vapor Experiment

Variations of snow cover in the source regions of the Yangtze and Yellow Rivers in China between 1960 and 1999

P1.23 HISTOGRAM MATCHING OF ASMR-E AND TMI BRIGHTNESS TEMPERATURES

Flood Forecasting Tools for Ungauged Streams in Alberta: Status and Lessons from the Flood of 2013

Souris River Basin Spring Runoff Outlook As of March 15, 2018

ATMOSPHERIC CIRCULATION AND WIND

Using MODIS imagery to validate the spatial representation of snow cover extent obtained from SWAT in a data-scarce Chilean Andean watershed

DEPARTMENT OF EARTH & CLIMATE SCIENCES Name SAN FRANCISCO STATE UNIVERSITY Nov 29, ERTH 360 Test #2 200 pts

RELATIVE IMPORTANCE OF GLACIER CONTRIBUTIONS TO STREAMFLOW IN A CHANGING CLIMATE

THE INVESTIGATION OF SNOWMELT PATTERNS IN AN ARCTIC UPLAND USING SAR IMAGERY

MODIS True Color Terra image from from NASA WorldView (worldview.earthdata.nasa.gov)

A. Windnagel M. Savoie NSIDC

Clear-Air Forward Microwave and Millimeterwave Radiative Transfer Models for Arctic Conditions

THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA NEVADA, USA

Chapter 2 Available Solar Radiation

1.6 TRENDS AND VARIABILITY OF SNOWFALL AND SNOW COVER ACROSS NORTH AMERICA AND EURASIA. PART 2: WHAT THE DATA SAY

The retrieval of the atmospheric humidity parameters from NOAA/AMSU data for winter season.

Remote sensing of ice clouds

+SOI Neutral SOI -SOI. Melt+ Melt- Melt+ Melt- Melt+ Melt- +SAM 1 (0.76) 6 (3.02) 1 (1.13) 5 (4.92) 1 (2.27) 0 (1.89) 14

Study of the Influence of Thin Cirrus Clouds on Satellite Radiances Using Raman Lidar and GOES Data

APPENDIX 2 OVERVIEW OF THE GLOBAL PRECIPITATION MEASUREMENT (GPM) AND THE TROPICAL RAINFALL MEASURING MISSION (TRMM) 2-1

Assessment of Snow Cover Vulnerability over the Qinghai-Tibetan Plateau

Dependence of evaporation on meteorological variables at di erent time-scales and intercomparison of estimation methods

Land Surface: Snow Emanuel Dutra

MODIS/Terra observed seasonal variations of snow cover over the Tibetan Plateau

Characteristics of Global Precipitable Water Revealed by COSMIC Measurements

An Annual Cycle of Arctic Cloud Microphysics

Potential impacts of aerosol and dust pollution acting as cloud nucleating aerosol on water resources in the Colorado River Basin

CLIMATE CHANGE AND REGIONAL HYDROLOGY ACROSS THE NORTHEAST US: Evidence of Changes, Model Projections, and Remote Sensing Approaches

Snowfall Detection and Rate Retrieval from ATMS

Christian Sutton. Microwave Water Radiometer measurements of tropospheric moisture. ATOC 5235 Remote Sensing Spring 2003

Canadian Prairie Snow Cover Variability

PREDICTION AND MONITORING OF OCEANIC DISASTERS USING MICROWAVE REMOTE SENSING TECHNIQUES

Modeling microwave emission in Antarctica. influence of the snow grain size

School on Modelling Tools and Capacity Building in Climate and Public Health April Remote Sensing

Towards a global climatology of cloud microphysical properties and why MODIS does not like sunsets (nor sunrise!)

Impact of proxy variables of the rain column height on monthly oceanic rainfall estimations from passive microwave sensors

Flood Risk Assessment

EVALUATION OF WINDSAT SURFACE WIND DATA AND ITS IMPACT ON OCEAN SURFACE WIND ANALYSES AND NUMERICAL WEATHER PREDICTION

NIDIS Intermountain West Drought Early Warning System December 11, 2018

On the Satellite Determination of Multilayered Multiphase Cloud Properties. Science Systems and Applications, Inc., Hampton, Virginia 2

Modelling snow accumulation and snow melt in a continuous hydrological model for real-time flood forecasting

ASimultaneousRadiometricand Gravimetric Framework

Remote sensing of sea ice

SNOWFALL RATE RETRIEVAL USING AMSU/MHS PASSIVE MICROWAVE DATA

An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

P6.13 GLOBAL AND MONTHLY DIURNAL PRECIPITATION STATISTICS BASED ON PASSIVE MICROWAVE OBSERVATIONS FROM AMSU

An investigation of sampling efficiency using historical data. Patrick Didier Advisor: Justine Blanford

Microwave emissivity of freshwater ice Part II: Modelling the Great Bear and Great Slave Lakes

Appendix D. Model Setup, Calibration, and Validation

Daniel J. Cecil 1 Mariana O. Felix 1 Clay B. Blankenship 2. University of Alabama - Huntsville. University Space Research Alliance

Remote Sensing. Ice and Snow

EVALUATION OF ARCTIC OPERATIONAL PASSIVE MICROWAVE PRODUCTS: A CASE STUDY IN THE BARENTS SEA DURING OCTOBER 2001

Missouri River Basin Water Management

NOAA Snow Map Climate Data Record Generated at Rutgers

Transcription:

Annals of Glaciology 16 1992 International Glaciological Society The use of microwave radiometer data for characterizing snow storage in western China A. T. C. CHANG,]. L. FOSTER, D. K. HALL, Hydrological Sciences Branch, NASA Goddard Space Flight Center, Greenbelt, Maryland, U.S.A. D. A. ROBINSON, Department if Geography, Rutgers University, New Brullswick, New Jersey, U.S.A. LI PEIJI AND CAO MEISHENG Lanzhou Institute of Glaciology and Geocryology, Academia Sinica, Lanzhou 73, China ABSTRACT. In this study a new microwave snow retrieval algorithm was developed to account for the effects of atmospheric emission on microwave radiation over high-elevation land areas. This resulted in improved estimates of snow-covered area in western China when compared with the meteorological station data and with snow maps derived from visible imagery from the Defense Meteorological Satellite Program satellite. Some improvement in snow-depth estimation was also achieved, but a useful level of accuracy will require additional modifications tested against more extensive ground data. INTRODUCTION In areas of high mountains, where snowmelt runoff makes up a large portion of the water supply, snow-cover and snow-storage information are vital for management of water resources. In western China, the varying snow extent and storage may influence the Asian summer monsoon and be linked to summer precipitation in southeastern China (Barnett and others, 1989; Hahn and Shukla, 1976). Up to now, empirical studies and climate models have fallen short of producing conclusive evidence for this because of limited or unreliable snow data. To understand better the possible teleconnection between snow, weather and climate in western China, more accurate and reliable snow data are needed. The most reliable snowpack parameter that can be extracted using satellite data is the area covered by snow. The availability of these data is somewhat limited, however, because of frequent cloud cover over large basins. Short-wavelength sensors cannot provide adequate information on the depth and water equivalent of the snowpack, which is needed to improve further our understanding of climatological processes and snowmelt runoff predictions. Microwave radiation, which is not strongly affected by cloud cover, has the capability of penetrating the snowpack. This portion of the electromagnetic spectrum can provide information about the thickness of the snow and has been used for monitoring snowpack storage in homogeneous areas with some success (Rango and others, 1979; Kunzi and others, 1982; Chang and others, 1987). In the present study an algorithm was developed to account for the effect of atmospheric constituents on microwave radiation emerging from a snowpack. This resulted in improved snow-depth estimates when compared with meteorological station data. MICROWAVE EMISSION FROM SNOW Microwave emission from a layer of snow over ground consists of two parts: emission by the underlying ground and emission/scattering by the snow itself. Both of these contributions are governed by the transmission and the reflection properties of the air-snow and snow-ground interfaces, and by the absorption and scattering properties of the snow layer. A snowpack can be modelled either as a collection of scatterers distributed within a dielectric medium (Chang and others, 1976) or as a continuous random medium with dielectric variation (Tsang and Kong, 1981). In this paper the method developed by Chang and others (1976) will be used to explain the radiative processes within the snowpack. Snow crystals act as scattering centers for microwave radiation passing through a snowpack. The energy scattered by snow particles, which redistributes the upwelling ground radiation according to the snow density, thickness, and crystal size, provides the physical basis for microwave detection of snow. Theoretical computations indicate that at 37 GHz (Iv =.8 cm) radiation within a dry snowpack is affected predominantly by the scattering of snow crystals. The effective microwave penetration depth into 215

a dry snowpack, typically 1 to wavelengths, depends on the wavelength used and the characteristic crystal size of the snowpack. The Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) is a five-frequency, dual-polarized microwave radiometer which measures the upwelling microwave radiation at 6.6, 1.7, 18., 21. and 37. GHz (4.6, 2.8, 1.7, 1.4 and.8 cm) while scanning 25 to either side of the spacecraft (swath width approximately 78 km) with a constant incidence angle of approximately 5 with respect to the Earth's surface. The spatial resolution at 37 GHz (A =.8 cm) is about 25 km and at 18 GHz (A = 1.7 cm) about 5 km. Since October 1978 and until August 1987 the SMMR has been acquiring passive microwave data which have been used for monitoring snow-cover characteristics. SNOW-PARAMETER RETRIEVAL ALGORITHM Several years ago, a snow water equivalent retrieval algorithm based on the differences between the microwave brightness temperature at 37 and 18 GHz was developed (Chang and others, 1987). For uniform snow fields the algorithm can be written as: BWE =.48 x (T 18H - T 37H ) cm (1) where SWE is the snow water equivalent in cm, and T 18H and T37H are the horizontally polarized brightness temperature for the SMMR 18 GHz and 37 GHz radiometers. This algorithm is based on a regression relationship derived from theoretically calculated brightness temperatures for a layer of snow of varying depth (up to cm) and density above frozen soil. The offset term of the linear fit between SWE and brightness temperature difference is zero in this case. A more detailed description of this model can be found in Chang and others (1987). This algorithm has been used to derive global snow maps using Nimbus-7 SMMR data from 1978 to 1987 (Chang and others, 1987). The effects of atmospheric components on the brightness temperature differences were not included in the original calculations. Also, any calibration errors associated with the brightness temperatures were absorbed into the intercept term of Equation (1). Reanalysis of Canadian data (Rango and others, 1979) shows that this algorithm has a tendency to overestimate the thickness of shallow snowpacks and underestimate deep snowpacks. Since the only ground data available for this study are measurements of snow depth, the relationship in Equation (1) has been modified for snow depth having a constant snow density and can be written as: BD = 1.59 x (T 18 H - T 37 H) cm. (2) When applying this equation to western China, many discrepancies in the snow maps have been noticed. This is probably due to the fact that (1) the assumed snow density (.3 g cm 3 ) and mean snow-grain radius (.3 mm) are different from those in western China, and (2) Equation (2) was tuned for a uniform snow field with moderate snow depth. The assumed snow density and snow-grain radius are the averaged values for many snow pits from the Colorado River basin (unpublished field data). Over western China, snow cover is predominantly shallow, patchy, and frequently of short duration (Li, 1987). In addition, Equation (2) was tuned for lowelevation regions. Because western China is a mountainous, arid, and high-altitude region, atmospheric effects are major complicating factors to the existing algorithm. The shallow snow cover in this region makes interpretation more difficult, since passive microwave sensors have trouble detecting patchy dry snow less than about 5 cm deep. Thus, it is necessary to adjust Equation (2) and recalibrate the SMMR estimates with ground station data and visible imagery from the Defense Meteorological Satellite Program (DMSP) satellite. COMPARISONS OF SMMR SNOW PRODUCTS WITH DMSP AND STATION DATA Daily snow depth reported by 175 weather stations for two of the winters (1978-79 and 1979-8) were used for comparison with the satellite-derived snow data. A major limitation of the meteorological station data in western China is the uneven distribution of the stations in Tibet and in high mountainous areas. Therefore, station data integrated with visible DMSP data were used as "ground truth" by which microwave data were calibrated. The DMSP Operational Linescan System (OLS) is a broad-band sensor with wavelengths in the visible range from about.4 to l.l m and a spatial resolution of about.6 km. In this study, 9" x 9" hard copies of visible DMSP archived imagery were analyzed and interpreted visually by trained analysts for one degree latitude and one degree longitude grids. This was the finest grid feasible with the imagery available. Five categories that were generated are: (1) patchy, 1 to 3% snow cover, (2) medium, 2 to 8% snow cover, (3) bright, 8 to % snow cover, (4) snow free, < 1% snow cover, and (5) cloud. The SMMR derived snow maps for the period of 1978-1987, with areal coverage between 7 to E 1 r c.,.. Vl., <n o - 3 c- 2 1-1 -1 o 1 2 3 Measured Snow Dep th (..:m) Fig. 1. Scatter plot of SMMR-derived snow depth using Equation (2) versus station data. The dashed line is the regression line, the solid line is the 1: 1 line. Stars represent single data points, squares represent two data points, and the diamond represents three data points. 5 216

15E 8 '5 ---" 75E 8 ' 1 3N 15E 8 Nimbu, Scanning Multichannel Microwave R.adiomeler(SMMR) Oall January 1-14.1979 illiild 2 3 SNOW DEPTH CLASSES... Iu cl", deknpc ioll ()cm \ - IOCm II-3Ocm ll -9Ocm no dala Deren!C Meteorological Satellite PrOlram( DMSP) Imagery hnuary 14.1979 ITIIDD o 2 SNOW value CLASSES cl." description Snowfree Palchy or ull SO ''. covered Very brllht. " co'fered Cloud or no da'a Fig. 2. SMMR-derived snow-depth class map, Equation (2), 1-14 January 1979. Fig. 3. DMSP-derived snow-class map, 14 January 1979. 75E 8 longitude and 25 to 5 N latitude, were used for comparison. SMMR-derived microwave snow depths are mapped onto 1/2 by 1/2 grid cells over a five-day period. Comparisons between the station data and SMMR data revealed that SMMR-derived snow values tend to overestimate shallow snowpacks and underestimate deep snowpacks (Fig. I). Furthermore, comparison of the SMMR-derived snow depths (Fig. 2), the DMSP snow class map (Fig. 3), and the station snow map (Fig. 4) demonstrates that not only snow depth but also snow areas from SMMR greatly exceed values from visible imagery and ground station reports. Comparisons between the percentage of snow-cover extent derived from the SMMR and the DMSP data are shown in Table I. The visible DMSP data, being easy to interpret, are used as the reference. They reveal that considerable differences exist in the accuracy for different physiographic regions. SMMR data overestimated snow cover in the plateau area and high mountains, but snow-cover estimates were more accurate in the low mountains, rolling hills, and basins. SMMR products severely overestimated snow-covered area during the months of November and March, which are the cold-season months, usually having the least snow cover. In spring, when the snow is wet, the SMMR algorithm underestimates the snow depth (Stiles and Ulaby, 198). 45 3N 75E. SIll ion Oala January 14.1979 illidd 2 3 SNOW DEPTH CLASSES... Iue cr." dncripl,on OCm (-locm II-]ocm ll-9ocm no data Fig. 4. Snow-depth class map from station data, 14 January 1979. ALGORITHM REVISION In order to circumvent the problems described above, a revised model has been adopted to account for atmospheric effects. A mid-latitude, winter, standard atmosphere without clouds was superimposed above the snow layer to calculate the brightness temperatures. The newly calculated brightness temperature-snow-depth relationship can be expressed as: SD = 2. X (T 18H - T 37H ) - 8. cm, (3) where 2. is the slope and -8. is the intercept. The slope of Equation (3) is slightly larger than that of Equation 217

T able 1. Comparison of DMSP and SMMR data in different physiographic regions of western China Percentage of snow cover Plateau High Low Rolling Basins mountains mountains hills M onthfyear DMSP SMMR DMSP SMMR DMSP SMMR DMSP SMMR DMSP SMMR J an 79 2.9 84.9 39.8 86.4 6.2 J an 8 36.8 89.5 51.8 93.5 55. J an 68. 87.8 66. 81.3 73. J an 86 83.2 93. 7 95.2 92.4 64.5 J an 87 71.8 99. 1 78.3 94. 74. Mar 79 53.5 83.9 56.6 91.5 49.6 Mar 8 25. 8 l.5 47. 81.7 53. Mar 45. 1 71.3 37. 7. 68.8 M ar 86 65.1 87. 78. 78.1 62.4 Mar 87 68. 1 92.1 78. 8.5 74. Nov 78 59. 1 79.6 7.3 81.1 51.7 Nov 79 17.6 8 1.6 3. 89.7 52. Nov 84 6.6.5 69. 76. 45. Nov 79. 5 91.9 92.8 89. 5.5 Nov 86 72.7 92. 2 72. 82.3 5. Average 55.1 86.8 64.1 84.5 58.9 56.5 46.2 5. 19.7 2.9 58. 7 46.2 58.3 22.5 23.2 66.3 57.7 7.8 46.5 3l.l 7.3 38. 5. 19.7 3 1. 64.4 8.8 53.9 23.9 33.8 62.6 46.2 65.4 18.3 27.1 62. 3.8 6. 18.1 24.3 62.2 53.9 6 1.5 33.8 24. 55.4 32. 46.2 8.6 19. 1 58.7 5. 68. 29.6 22.8 27.6 36.4 36.4. 3. 7 55.1 5. 36. 19. 7 18.8 43.8 12. 19. 2 17. 9.9 47.3 19.3 3.8 2. 9.9 32.6 23. 11.5 8. 5.6 54.9 4 1.5 47.9 19.2 2.3 (2) due to the atmospheric corrections. Figure 5 shows that Equation (3) reflects the actual snow signatures measured by the SMMR more closely. The slope of the regression line between the estimated and observed snow depth is closer to the 1 : 1 line, compared with the slope derived by using Equation (2). The correlation coefficient is.71. The snow depths below 1 cm are more evenly distributed above and below the I : I line. The mean error of estimated snow depth improved slightly to 4.7 cm. The adjusted SMMR snow-area map (Fig. 6) can be compared with the DMSP map (Fig. 3) and the station map (Fig. 4). Results from the comparison between adjusted SMMR snow maps and DMSP snow maps are 5 I.c n. > "' g Vl " v >. n: :> Vl " 3 2 :.. 1 :....r. 1i113N O. -1-1 o 1 2 3 5 M eac;u r td Snow Deplh (cm) Fig. 5. Scatter plot of SMMR-derived snow depth using Equation (3) versus station data. The dashed line is the regression line, the solid line is the 1: 1 line. Stars represent single data points} squares represent two data points} and the diamond represents 11 data points. Nl mbu5 Scanni ng Mullichanncl Microwave Rldiomc1er(SMMR) 11 1 January 1-14.1979 [ill] D I Z 3 SNOW D EPTH CLASS ES va lue cll de\cripl ion o - cm 9 - :?rocm 21 - ;.clcm 51- m no dlla Fig. 6. SMMR-derived snow-depth class map} Equation (3)} 1-14 January 1979. 218

Table 2. Comparison of adjusted SMMR snow-cover area with DMSP data on the Tibet Plateau and in the high mountains Plateau Percentage of snow cover High mountains Monthfyear DMSP SMMR DMSP SMMR Jan 79 2.9 52.1 39.8 67.9 Jan 8 36.8 6.5 51.8 76.6 Jan 68. 36.5 66. 52.5 Jan 86 83.2 72.3 95.2 78.5 Jan 87 71.8 7.6 78.3 74.7 Mar 79 53.5 5. 56.6 62.2 Mar 8 25. 48.2 47. 68.4 Mar 45.1 24.1 37. 38.8 Mar 86 65.1 54.1 78. 61. Mar 87 68.1 57.1 78. 53.3 Nov 78 59.1.2 7.3 56.8 Nov 79 17.6 51.8 3. 73.1 Nov 84 6.6 41.8 69. 51.9 Nov 79.5 73. 92.8 81.7 Nov 86 72.7 64.7 72. 58.2 Average 55.1 53. 64.1 63.7 summarized in Table 2. The differences in estimated percentage of snow cover for the plateau and highmountain categories are greatly reduced. For plateau areas the averaged percentage of snow cover from Equation (2) is 86.8%, and, from Equation (3), it is 53%. This new value is much closer to the DMSP estimated percentage of 55.1 %. For high mountains, the averaged SMMR percentage changed from 84.5% to 63.7% as compared to the DMSP value of 64.1%. By applying the new algorithm, the SMMR-derived snow depth and snow-covered area estimates correspond much better with the " ground truth" data. DISCUSSION Microwave signatures received by space borne sensors are not only affected by atmospheric constituents but also by surface properties, such as soil condition, vegetation cover, and topographic conditions, as well as the condition of the snow. Although the SMMR-derived snow depths for shallow snow from the adjusted algorithm compare more favorably with observed values, more work needs to be done to include snow-density and grain-size data which may further improve the performance of this algorithm. Additionally, more studies will be performed to characterize the slope and intercept of the new algorithm for different snow conditions and physiographic regions. ACKNOWLEDGEMENTS The snow research activities (A. T. C. Chang, J. L. Foster and D. K. Hall) at NASAjGSFC are supported by the NASA Hydrology Program. Authors from Rutgers University (D. A. Robinson) and the Lanzhou Institute of Glaciology and Geocryology (P.]. Li and M. S. Cao) wish to express their deep appreciation to the National Science Foundations of the U.S.A. and China for supporting this cooperative project through grants INT 87-13878 and 48819 respectively. REFERENCES Barnett, T. P., L. Dumenil, U. Schlese, E. Roeckner and M. Latif. 1989. The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 46, 661-6. Chang, A. T. C., P. Gloerson, T. Schmugge, T. T. Wilheit and H.J. Zwally. 1976. Microwave emission from snow and glacier ice. ]. Glaciol., 16(74), 23-29. Chang, A. T. C., ]. L. Foster and D. K. Hall. 1987. Nimbus-7 SMMR derived global snow cover parameters. Ann. Glaciol., 9, 39-44. Hahn, D. G. and J. Shukla. 1976. An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. ]. Atmos. Sci., 33, 2461-2462. Kunzi, K. F., S. Patil and H. Rott. 1982. Snow-cover parameters retrieved from Nimbus-7 Scanning Multichannel Microwave Radiometer (SMMR) data. IEEE Trans. Geosci. Remote Sensing, GE2(4), 452-467. Li Peiji. 1987. Seasonal snow resources and their fluctuations in China. International Association of Hydrological Sciences Publication 166 (Symposium at Vancouver 1987 - Large Scale Effects of Seasonal Snow Cover), 93-14. Rango, A., A. T. C. Chang and J. L. Foster. 1979. The utilization of space borne microwave radiometers for monitoring snowpack properties. N ord. Hydrol., 1(1), 25-. Stiles, W. H. and F. T. Ulaby. 198. The active and passive microwave response to snow parameters. 1. Wetness. ]. Geophys. Res., (C2), 137-144. Tsang, L. and J. A. Kong. 1981. Scattering of electromagnetic waves from random media with strong permittivity fluctuations. Radio Sci., 16, 33-32. The accuracy of references in the text and in this list is the responsibility if the author / s, to whom queries should be addressed. 219