The Hand Warmer Design Challenge: Where Does the Heat Come From?

Similar documents
AP Chemistry Lab #10- Hand Warmer Design Challenge (Big Idea 5) Figure 1

AP Chemistry: Designing an Effective Hand Warmer Student Guide INTRODUCTION

Designing a Hand Warmer AP* Chemistry Big Idea 5, Investigation 12 An Advanced Inquiry Lab

Determining the Enthalpy of a Chemical Reaction

COPYRIGHT FOUNTAINHEAD PRESS

THIS LAB IS CHAOS! 2. In liquids or gases? Explain.

Investigation 12. The Hand Warmer Design Challenge: Where does the Heat come from?

Thermodynamics of Salt Dissolution

Investigation 12. The Hand Warmer Design Challenge: Where does the Heat come from?

#30 Thermochemistry: Heat of Solution

Name: Section: Score: /10 PRE LABORATORY ASSIGNMENT EXPERIMENT 7

Lab #9- Calorimetry/Thermochemistry to the Rescue

Thermodynamics Enthalpy of Reaction and Hess s Law

Lab Report. Dystan Medical Company - Cold Packs and Hot Packs. Colin Hancock. Wolfgang Allred #202

C q T q C T. Heat is absorbed by the system H > 0 endothermic Heat is released by the system H < 0 exothermic

Chemistry. Understanding Water V. Name: Suite 403, 410 Elizabeth St, Surry Hills NSW 2010 (02)

Matter & Energy: Temperature & Heat in Physical Processes

Experiment 4 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate

The Enthalpies of Reactions

Thermodynamics: Enthalpy of Hydration of MgSO 4 A Calorimetry experiment HASPI Medical Chemistry Lab Background/Introduction

Experiment #12. Enthalpy of Neutralization

Thermodynamics for Dissolving an Ionic Salt (NaNO 3(s) )

Experiment 15 - Heat of Fusion and Heat of Solution

EXPERIMENT 9 ENTHALPY OF REACTION HESS S LAW

Working with Solutions. (and why that s not always ideal)

8 Enthalpy of Reaction

Dr. White Chem 1B Saddleback College 1. Experiment 15 Thermodynamics of the Solution Process

The CCLI Initiative Computers in Chemistry Laboratory Instruction

HEATS OF REACTION EXPERIMENT

Chemical Energy Conversions. Vanderbilt Student Volunteers for Science VINSE/VSVS Rural

Calorimetry: Heat of Solution

Chemistry CP Lab: Additivity of Heats of Reaction (Hess Law)

Name: Chemistry 103 Laboratory University of Massachusetts Boston HEATS OF REACTION PRELAB ASSIGNMENT

Unit 3, Lesson 02: Enthalpy Changes in Chemical Reactions

Chapter 6, Lesson 7: Energy Changes in Chemical Reactions

Determining the K sp of Calcium Hydroxide

Experiment 14 - Heats of Reactions

HESS S LAW: ADDITIVITY OF HEATS OF REACTION

Lab 5 Enthalpy of Solution Formation

Modification of Procedure for Experiments 17 and 18. everything with distilled water and dry thoroughly. (Note: Do not use acetone to rinse cups.

IB Chemistry Solutions Gasses and Energy

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

DETERMINING AND USING H

Experiment #13. Enthalpy of Hydration of Sodium Acetate.

Quiz I: Thermodynamics

Enthalpy of Formation of Ammonium Chloride Version 6.2.5

Thermodynamics. Equations to use for the calculations:

Experiment 5. Heat and Temperature

Chemistry 3202 Lab 6 Hess s Law 1

Additivity of Heats of Reaction: Hess s Law

To use calorimetry results to calculate the specific heat of an unknown metal. To determine heat of reaction ( H) from calorimetry measurements.

Thermodynamics. Equations to use for the calculations:

Reactions that Produce Heat

2 How Substances Dissolve

What Do You Think? Investigate GOALS. Part A: Freezing Water

Released Science Inquiry Task A Cool Investigation

HESS S LAW: ADDITIVITY OF HEATS OF REACTION

Experiment 17 It s A Gas and More!

MiSP CHEMICAL REACTIONS, L3 Teacher Guide. Introduction

Freezing Point Depression: Can oceans freeze? Teacher Advanced Version

Experiment 6: Using Calorimetry to Determine the Enthalpy of Formation of Magnesium Oxide

Activity Sheet Transferring thermal energy by dissolving salts

Thermochemistry: the study of energy (in the from of heat) changes that accompany physical & chemical changes

Give 6 different types of solutions, with an example of each.

Moles Lab Activity 2: Elements Copper

Student Notes. Chemical Reactions LINK

Thermodynamics. Standard enthalpy change, H

Name Class Date. As you read Lesson 17.1, use the cause and effect chart below. Complete the chart with the terms system and surroundings.

Aspirin Lab By Maya Parks Partner: Ben Seufert 6/5/15, 6/8/15

2 How Substances Dissolve

The Synthesis and Analysis of Aspirin

How Can We Determine the Actual Percentage of H 2 O 2 in a Drugstore Bottle of Hydrogen Peroxide?

Chapter 12: Solutions. Mrs. Brayfield

Experiment 12 Determination of an Enthalpy of Reaction, Using Hess s Law

Station 1 Water is a polar molecule and has a very unique structure

Table 1. Data for Heat Capacity Trial 1 Trial 2

In general, the condition for a process to occur (for it to be "spontaneous") is that G < 0 (i.e. negative) where

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Measuring Enthalpy Changes

Thermochemistry: Heat and Chemical Change

High School Science Chemistry Unit 12 Exemplar Lesson 02: Heat Energy in Chemical Reactions

Name: Block: Date: Student Notes. OBJECTIVE Students will investigate the relationship between temperature and the change of the state of matter.

Apply the ideal gas law (PV = nrt) to experimentally determine the number of moles of carbon dioxide gas generated

AP Chemistry Big Idea Review

Thermodynamics and the Solubility of Sodium Tetraborate Decahydrate

Acid-Base Titration. Computer OBJECTIVES

Additivity of Heats of Reaction: Hess s Law

The student s results are shown in the table below. Time / minutes Time / minutes

2 nd Semester Study Guide 2016

Gas Laws. Bonding. Solutions M= moles solute Mass %= mass solute x 100. Acids and Bases. Thermochemistry q = mc T

The effects of sodium chloride on the Boiling Point of Dihydrogen Monoxide

not to be republished NCERT MOST of the reactions are carried out at atmospheric pressure, hence THERMOCHEMICAL MEASUREMENT UNIT-3

ESSENTIAL EXPERIMENTS CHEMISTRY

100 C = 100 X = X = 218 g will fit in this solution. 25 C = 100 X = 3640 X = 36.4 g will fit in this solution.

Lesson 4. Temperature change

Evaluation copy. The Molar Mass of a Volatile Liquid. computer OBJECTIVES MATERIALS

Experiment Eight Acids and Bases

MOST of the reactions are carried out at atmospheric pressure, hence

PSI AP Chemistry: Solutions Practice Problems

EXPERIMENT 7: THE LIMITING REACTANT

Transcription:

The Hand Warmer Design Challenge: Where Does the Heat Come From? LSNED Learn Something New Every Day About Sharing and Contributions Interesting Facts Science In Your Mittens: The Chemistry Of Hand Warmers By RYAN Published: DECEMBER 15, 2010 Tis the season for cold fingers. If you re stuck out in the cold for a few hours, your mittens can only do so much. You may need to bring in some chemical reinforcements. There are two types of chemical hand warmers that I m going to look at here. The first are the more common disposable variety. Like a little pouch filled with something powdery. You shake it up and it starts to warm, and later on as it wears down, more shaking will squeeze out more heat. Let s find out what s going on inside the pouch. The heat is generated from plain old iron that plain old rusts. That s right. If you could fit grandpa s Plymouth in your mittens, that would do the trick. As iron rusts (the fancy word being oxidizes) it generates heat. That s exothermic, daddio! So inside the pouch there is a lot of iron powder. When you remove that pouch from its airtight plastic wrapper, the oxygen begins the oxidization process and it begins putting out heat. The rest of the ingredients in the pouch serve to control the oxygen-iron reaction. Some things get the reaction started quickly for instant heat, while others work to keep the heat lasting as long as possible. Carbon is in there to help spread the heat evenly, just the same as in a barbeque. When you shake the pouch after a while, it exposes new iron to oxygen to give the rusting another boost. Now the second kind of hand warmer is more nifty because you can see it happening. It s a clear plastic sealed pouch filled with a liquid. Floating around inside is a little metal disc about the size of a nickel. When you bend that disc, the liquid instantly freezes and begins generating heat. Once the heat is done you can boil the pouch to reverse the reaction and be ready to warm another day. So let s examine that cool freezing part. What s going on there? The clear liquid in the pouch is sodium acetate. That s sodium salt dissolved in acetic acid. It s critical that this is a super-saturated solution, meaning there is more sodium than the acid can actually hold. Plus, it s a super-cooled solution at room temperature. It should be frozen (crystallized), but it s not. The crystals have nothing to grow on. (you know, like how every snowflake is formed around a speck of dust) Until you snap that metal disc. Adapted from AP Chemistry Guided-Inquiry Experiments: Applying the Science Practices, Investigation 12 and Advanced Chemistry with Vernier, as well as Laboratory Article from Learn Something New Every Day http://lsned.com/

With a snap, you create a small bit of solid sodium acetate trihydrate that lets those first crystals form. Then further crystals grow from there, and so forth across the entire pouch in a second. The change from liquid to crystal releases heat energy. That s exothermic, dude! After 20 minutes the heat will be done, but by putting the pouch in warm water, the crystals dissolve. In fact, the sodium acetate is soaking up heat energy that it will store until the next crystallization. Fun bonus fact: You ve probably eaten sodium acetate, as it is used to make salt and vinegar flavored potato chips. Source: Chemical & Engineering News: hand warmers Source: Science Buddies: sodium acetate hand warmers http://lsned.com/facts/hand-warmer-chemistry/ Where Does the Heat Come From? The article mentions two types of hand warmers that are commonly sold in stores. In this experiment you will investigate the possibility of yet another type of hand warmer using different ionic solids dissolved in water. When a solution forms between an ionic solid and water several events must occur. First, the ionic bonds in the solid must be broken and new attractions between water molecules and the ions of the solid must form. Remember that breaking bonds is always an endothermic process while forming new bonds and particulate attractions (such as between ions and water) is an exothermic process. When the amount of energy required to break the bonds is greater than the amount of energy released when forming the new attractions the overall solution process absorbs energy in the form of heat (endothermic, having a positive enthalpy value). The overall solution process will release heat when the amount of energy released from the new attractions is greater than the amount of energy needed to break the ionic bonds of the solid (exothermic, having a negative enthalpy value). The entropy change of solution formation is often positive because when the pure solid and liquid are mixed there are many more positional microstates (more disorder). Also note, there are some cases where the solution actually becomes more ordered! Figure 1 The solution formation is conducted within a calorimeter using two polystyrene cups nested in a beaker, as shown in Figure 1. By measuring the initial temperature of the water and the final temperature of the solution, the enthalpy of solution can be determined. In this experiment, you will mix a known amount of solid with a known volume of water at constant pressure. q The following relationships apply: q = mcp T and H solution = moles solute

OBJECTIVES In this experiment, you will Calculate the calorimeter constant. Measure the temperature change of the dissolution of a variety of salts in water. Calculate the heat of dissolution ΔH solution, in kj/mol rxn solute of each salt. Determine which substance would make the best hand warmer. Compare your calculated enthalpies of solutions with the accepted values. MATERIALS Data Collection Mechanism computer or handheld Temperature Probe Polystyrene cup calorimeter (2 cups per group) lid for calorimeter magnetic stirrer or glass stir rod ring stand utility clamp hot plate calcium chloride solid sodium carbonate solid sodium chloride solid ammonium nitrate distilled water two 250 ml beakers or cups 100 ml graduated cylinder PROCEDURE Part I: Determining the Calorimeter Constant 1. Obtain and wear goggles. 2. Set up the data collection system. Connect the interface to the computer or handheld with the proper interface cable. a. Connect a Temperature Probe to the interface. b. Start the data collection program and set up a Time Graph to gather data for ten minutes. The time between samples need not be shorter than 5 seconds. 3. Nest two polystyrene cups inside each other and place them into a 250 ml beaker as shown in Figure 1. 4. Use a graduated cylinder to measure 50.0 ml of distilled water. Place the water into the calorimeter you have constructed. 5. Use a graduated cylinder to measure another 50.0 ml of distilled water. Place this sample into a 250 ml beaker and heat to approximately 50.0 C with occasional stirring. 6. Record the initial temperature of both the cold water and the hot water separately. 7. Start the data collection program and allow the program to graph a few initial temperature readings, and then quickly pour the hot water from the beaker into the water in the calorimeter.

8. You may stop data collection soon after a maximum temperature is reached. Record the highest temperature of the water mixture and save or print a copy of the graph to use for data and analysis. 9. Repeat this procedure if time allows. DATA TABLE PART I Record all temperatures in C Initial temperature cold water Initial temperature hot water Maximum temperature of the mixture Temperature change, T hot water Temperature change T cold water Part II: Determining the Heat of Solution 1. Use the same data collection setup as Part I, but modify the time graph to gather data for ten minutes. 2. Measure out 50.0 ml of distilled water and place into the calorimeter. 3. Measure out approximately 4 grams of the ionic solid assigned by your teacher. Record the exact mass. 4. Start the data collection and allow the program to graph a few initial temperature readings and quickly pour the solid into the calorimeter. Stir using either a glass rod or the stir bar and magnetic stirrer as provided by your teacher. 5. Record the most extreme temperature, high or low, obtained during solution formation as the final temperature and save or print a copy of the graph to use for data and analysis. 6. Dispose of the solution as instructed by your teacher. If time allows run a second trial. 7. Repeat this procedure with a different ionic solid. If time allows run a second trial. 8. Share your results and obtain class data with respect to each solute tested as instructed by your teacher.

DATA TABLE PART II Name of Ionic Solid: Initial temperature of water ( C) Extreme temperature of solution ( C) Temperature change, T

Class Data NaCl GROUP NUMBER: 1 2 3 4 5 6 GROUP NUMBER: 7 8 9 10 11 12

Class Data Na 2 CO 3 GROUP NUMBER: 1 2 3 4 5 6 GROUP NUMBER: 7 8 9 10 11 12

Class Data NH 4 NO 3 GROUP NUMBER: 1 2 3 4 5 6 GROUP NUMBER: 7 8 9 10 11 12

Class Data CaCl 2 GROUP NUMBER: 1 2 3 4 5 6 GROUP NUMBER: 7 8 9 10 11 12

PRE LAB QUESTIONS Review the article from Learn Something New Every Day and view the animation located at the following website: http://group.chem.iastate.edu/greenbowe/sections/projectfolder/flashfiles/thermochem/solutionsalt.html 1. After observing the animation of an ionic solid dissolving in water, describe the interactions between the anion and the water molecule. Illustrate this interaction by sketching a diagram. Be sure to include charges where appropriate. 2. Describe the interactions between the cation and the water molecule. Illustrate this interaction by sketching a diagram. Be sure to include charges where appropriate. What type of intermolecular attractive force exists between ions and the water molecule? 3. Two types of hand warmers were discussed in the article each using a different process for generating heat. Identify each process as either a chemical or physical change and justify your answer. 4. For each term in the equation q = mc p T, identify what it measures or signifies as well as its unit of measure. 5. What determines whether a given solute will form a solution in a given solvent? 6. Describe the three steps of solution formation. Be sure to include the details regarding dissolving of the substance, solution formation and the intermolecular interactions involved in each step. 7. Identify the hand warmer prepared in this experiment as a physical or chemical process. Justify your choice. 8. Why it is thermodynamically possible for some ionic solids to dissolve even though the solution process is endothermic? 9. A student conducts an experiment to determine the enthalpy of solution for lithium chloride dissolved in water. The student combines 5.00 grams of lithium chloride with 100.0 ml of distilled water. The initial temperature of the water is 23.0 C and the highest temperature after mixing reaches 33.0 C. Assume a J density of 1.00 g/ml and a specific heat of 4.18. The calorimeter constant was found to be 20.0 J g C C. (a) Is the reaction endothermic or exothermic? Justify your answer. (b) Calculate the temperature change of the solution in the calorimeter. (c) Calculate the total mass of the solution in the calorimeter. (d) Calculate the energy change of the solution. (e) Calculate the energy change of the calorimeter. (f) Calculate the total ΔH solution in kj/mole

POST LAB QUESTIONS AND DATA ANALYSIS Part I 1. Describe the energy transfer occurring in the polystyrene cup when the hot and cold water are mixed. 2. Calculate the quantity of energy, q of the hot water. Is this energy absorbed or released? 3. Calculate the energy (q) for the cold water. Is this energy absorbed or released? 4. According to the Law of Conservation of Energy, the energy released and the energy absorbed should be equal in magnitude (q hot = q cold ). Explain the difference in energy between the two values calculated. 5. Calculate the calorimeter constant, C, in J C 1. Part II 1. Calculate the total amount of heat energy, q, for each trial of each solution. Just as in the hot and cold water, q solution and q rxn are assumed to be equal in magnitude but opposite in sign, q rxn = q solution. Assume the density of the solutions to be that of water. Also assume the specific heat of each solution to be that of water. In calculating total enthalpy of the solution remember to include the amount of heat energy contributed by the calorimeter. q solution = (q rxn + C T) Be sure to identify each salt used. 2. Calculate the number of moles of salt used for each trial. 3. Use the heat energy calculated in question 1 along with the moles calculated in question 2 to determine the enthalpy change, H solution in kj/mol for each ionic solid that you tested. Calculate the average enthalpy change for each solid if more than one trial was performed. 4. Write the balanced net ionic equation for the dissolution of each ionic solid that you tested. Include the H solution calculated in question 3 on the appropriate side (reactant or product) of your equation. 5. Using the class data arrange the ionic solids in order of least to best possible solutions for a hand warmer. Justify your ranking. 6. Calculate the percent discrepancy between the accepted values (published values) of the H of solution for each salt you tested with your experimental values. Cite possible reasons for any discrepancies. 7. A student conducts two trials of each experiment, but neglects to rinse the calorimeter cup between trials. What effect, if any, would this error have on the calculated value of the H of solution?