C Nuclear Magnetic Resonance

Similar documents
Infrared Spectroscopy: Functional Group Determination

Unique Solutions R. Amazing World of Carbon Compounds. C h a p t e r. G l a n c e

Physical Chemistry (II) CHEM Lecture 25. Lecturer: Hanning Chen, Ph.D. 05/01/2018

Organic Acids - Carboxylic Acids

Unit #9 : Definite Integral Properties; Fundamental Theorem of Calculus

ORGANIC - EGE 5E CH UV AND INFRARED MASS SPECTROMETRY

Using NMR and IR Spectroscopy to Determine Structures Dr. Carl Hoeger, UCSD

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

OAT Organic Chemistry - Problem Drill 19: NMR Spectroscopy and Mass Spectrometry

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H

1. Weak acids. For a weak acid HA, there is less than 100% dissociation to ions. The B-L equilibrium is:

3.15 NMR spectroscopy Different types of NMR There are two main types of NMR 1. C 13 NMR 2. H (proton) NMR

Read section 3.3, 3.4 Announcements:

Chem 213 Final 2012 Detailed Solution Key for Structures A H

4 7x =250; 5 3x =500; Read section 3.3, 3.4 Announcements: Bell Ringer: Use your calculator to solve

ORGANIC - CLUTCH CH ANALYTICAL TECHNIQUES: IR, NMR, MASS SPECT

Exam I 19 April 2004 Name:

Fundamentals of Analytical Chemistry

ORGANIC - BROWN 8E CH INFRARED SPECTROSCOPY.

Look for absorption bands in decreasing order of importance:

Cu 3 (PO 4 ) 2 (s) 3 Cu 2+ (aq) + 2 PO 4 3- (aq) circle answer: pure water or Na 3 PO 4 solution This is the common-ion effect.

22 and Applications of 13 C NMR

Lecture 11. IR Theory. Next Class: Lecture Problem 4 due Thin-Layer Chromatography

2. Match the following NMR spectra with one of the following substances. Write you answer in the box along side the spectrum. (16 points) A B C D E F

CHEM 203. Midterm Exam 1 October 31, 2008 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

Chapter 6 Notes, Larson/Hostetler 3e

BOND ORDER (BO): Single bond Þ BO = 1; Double bond Þ BO = 2; Triple bond Þ BO = 3 Bond Order Þ bond strength and bond length

Chem 130 Second Exam

Answers to Assignment #5

BASIC NOMENCLATURE. The names of the groups you must be able to recognize and draw are:

Proton NMR. Four Questions

The graphs of Rational Functions

ORGANIC - BRUICE 8E CH MASS SPECT AND INFRARED SPECTROSCOPY

Chapter 13: Nuclear Magnetic Resonance (NMR) Spectroscopy direct observation of the H s and C s of a molecules

CHAPTER 08: MONOPROTIC ACID-BASE EQUILIBRIA

Nuclear spin and the splitting of energy levels in a magnetic field

Module 2: Rate Law & Stoichiomtery (Chapter 3, Fogler)

7a. Structure Elucidation: IR and 13 C-NMR Spectroscopies (text , , 12.10)

CHEM Chapter 13. Nuclear Magnetic Spectroscopy (Homework) W

Tuesday, January 13, NMR Spectroscopy

Chem 130 Second Exam

Carbon Compounds. Chemical Bonding Part 2

CHEM 213 FALL 2016 MIDTERM EXAM 2 - VERSION A

13: Diffusion in 2 Energy Groups

SPECTROSCOPY MEASURES THE INTERACTION BETWEEN LIGHT AND MATTER

Name: Student Number: University of Manitoba - Department of Chemistry CHEM Introductory Organic Chemistry II - Term Test 1

video 14.4 isomers isomers Isomers have the molecular formula but are rearranged in a structure with different properties. Example: Both C 4 H 10

C NMR Spectroscopy

CHEMICAL KINETICS

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

More information can be found in Chapter 12 in your textbook for CHEM 3750/ 3770 and on pages in your laboratory manual.

What is in Common for the Following Reactions, and How Do They Work?

Consolidation Worksheet

FAMILIES of ORGANIC COMPOUNDS

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Nuclear Magnetic Resonance Spectroscopy

7.2 Riemann Integrable Functions

Chapter 1 Reactions of Organic Compounds. Reactions Involving Hydrocarbons

CHEM 203. Final Exam December 15, 2010 ANSWERS. This a closed-notes, closed-book exam. You may use your set of molecular models

CH 320/328 N Summer II 2018

Properties of Integrals, Indefinite Integrals. Goals: Definition of the Definite Integral Integral Calculations using Antiderivatives

CHAPTER 24 Organic Chemistry

Lesson 1: Quadratic Equations

Alkanes, Alkenes and Alkynes

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

Massachusetts Institute of Technology Organic Chemistry Hour Exam #1. Name. Official Recitation Instructor

Chemistry 14C Winter 2017 Exam 2 Solutions Page 1

Table 8.2 Detailed Table of Characteristic Infrared Absorption Frequencies

AP Calculus Multiple Choice: BC Edition Solutions

MASS SPECTROMETRY: BASIC EXPERIMENT

Hydronium or hydroxide ions can also be produced by a reaction of certain substances with water:

State space systems analysis (continued) Stability. A. Definitions A system is said to be Asymptotically Stable (AS) when it satisfies

Instrumental Chemical Analysis

Numerical Analysis: Trapezoidal and Simpson s Rule

Chapter 1: Fundamentals

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

UNIT 1 FUNCTIONS AND THEIR INVERSES Lesson 1.4: Logarithmic Functions as Inverses Instruction

IUPAC Nomenclature Chem12A, Organic Chemistry I

A-Level Mathematics Transition Task (compulsory for all maths students and all further maths student)

Closed book exam, no books, notebooks, notes, etc. allowed. However, calculators, rulers, and molecular model sets are permitted.

x = b a n x 2 e x dx. cdx = c(b a), where c is any constant. a b

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

Construction of Gauss Quadrature Rules

Please write neatly!

William H. Brown & Christopher S. Foote

Infrared Spectroscopy An Instrumental Method for Detecting Functional Groups

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

Numerical Integration

N_HW1 N_HW1. 1. What is the purpose of the H 2 O in this sequence?

Problem Set 3 Solutions

MATH SS124 Sec 39 Concepts summary with examples

Organic Chemistry 1 CHM 2210 Exam 4 (December 10, 2001)

Electronegativity Scale F > O > Cl, N > Br > C, H

Chem 130 Third Exam. Total /100

2008 Mathematical Methods (CAS) GA 3: Examination 2

The resonance frequency of the H b protons is dependent upon the orientation of the H a protons with respect to the external magnetic field:

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Química Orgânica I. Nuclear Magnetic Resonance Spectroscopy (II) Ciências Farmacêuticas Bioquímica Química AFB QO I 2007/08 1 AFB QO I 2007/08 2

To Do s. Answer Keys are available in CHB204H

Transcription:

Inherent Difficulties Low bundnce of 13 C (1.1% vs, 99.9% for 1 H) Lower gyromgnetic rtio (1/4 tht of 1 H) - 13 C: 67.28 vs. 1 H 267.53-1/2 1,000,000 nuclei t 60 MHz E ΔE +1/2 1,000,009 nuclei t 60 MHz mgnetic field (B 0 ) Slow T 1 relxtion times (10-100 sec vs. 0.1-1 sec for 1 H) 13 C- 1 H coupling complictes spectrum; decreses pek intensity

see lso Pvi Tble 6.1; Appendices 7 & 8 Chemicl Shift

Chemicl Shift Fctors the Influence Chemicl Shift 1. hybridiztion 2. electronegtivity of element bonded to crbon 3. nisotropy * * * δ 22.6 δ 139.0 δ 38.2 H * * δ 62.3 δ 202.8

Differences Between 1 H nd 13 C NMR 1. rnge of 13 C chemicl shifts is very lrge compred to 1 H 2. 13 C chemicl shifts re more sensitive to smll chnges in chemicl environment 3. Influence of electronegtive toms on chemicl shift greter in 13 C NMR thn 1 H NMR 1 H shifts 13 C shifts 1.32 1.32 3.62 22.8 25.8 61.9 CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 H CH 3 CH 2 CH 2 CH 2 CH 2 CH 2 H 0.90 1.32 1.56 14.2 32.0 32.8 See Pvi, Appendix 8 for clcultion of 13 C chemicl shifts 4. Homonucler ( 13 C / 13 C) splitting is not observed

NMR Spectr of n-butylbenzene

Heteronucler Spin-Spin Splitting ( 1 H- 13 C) 3 J = 0-3 Hz CH 2 CH 2 CH 3

H H Heteronucler Spin-Spin Splitting H H H cholesterol 1 H coupled spectrum 1 H decoupled spectrum

Proton Decoupled 13 C NMR

Proton Decoupled 13 C NMR 1 H coupled spectrum CH 3 CH 3 1 H brodbnd decoupled spectrum 1 H off resonnce decoupled spectrum

Nucler verhuser Effect & Cross Polriztion of Spin 1 H decoupler 300 MHz B 0 Boltzmn distribution N upper N lower = 1,000,000 1,000,048 = 1,000,000 1,000,000 = 1 1 13 C cross polriztion B 0 Boltzmn distribution N upper N lower = 1,000,000 1,000,048 = 1,000,000 1,000,096 Signl Enhncement: CH 3 > CH 2 > CH >> C

13 C Pulse Sequence FID:

Relxtion Times (T 1 ) in generl 68 s 9.8 s T 1 : C > CH > CH 2 > CH 3 CH 3 CH 3 CH 3 C CH 2 CH CH 3 CH 3 9.3 s 13 s 23 s tumbling H H T 1 = 37 s T 1 = 20 s H H H T 1 = 1-2 s for CH, CH 2, CH 3 T 1 = 4-6 s for quternry C

Moleculr Symmetry How Mny Lines? CH 3 H 3 C CH 3 C-CH 2 -CH 3 CH 3 H 3 C CH 3 H H 3 C CH 3 A B C D

Integrtion A 2 peks B C 1 D 2 3 4

Distortionless Enhncement by Polriztion Trnsfer (DEPT) DEPT-45 DEPT-90 DEPT-135 C 0 0 0 CH + + + CH 2 + 0 - CH 3 + 0 +

Distortionless Enhncement by Polriztion Trnsfer (DEPT) C CH CH 2 CH 3 DEPT-45 0 + + + DEPT-90 0 + 0 0 DEPT-135 0 + - + 4 7 CH 3 5 6 DEPT-135 3 2 1 H H 3 C 8 CH 3 9 9 menthol DEPT-90 DEPT-45 13 C NMR 1 2 4 6 5 7 8 3 9 9

H 13C NH H Nucler Mgnetic Resonnce DEPT-135 CH3 CH32C H CH3 H H

Alknes 2-methylpentne R CH 3 R 2 CH 2 R 3 R 4 chemicl shifts CH C 8-30 ppm 15-55 ppm 20-60 ppm 30-40 ppm CH 3 CH 3 CH-CH 2 -CH 2 -CH 3 b c d e c b d e

Alkenes C C chemicl shifts 110-150 ppm cis-2-hexene H H b C C c 130.7 c 123.9 b 29.1 d e f H 3 C CH 2 CH 2 CH 3 d e f

chemicl shifts Alkenes 1-hexene C C 110-150 ppm f e d c b CH 3 -CH 2 -CH 2 -CH 2 -CH CH 2 114.2 139.2 b

Alkenes C C chemicl shifts 110-150 ppm dihydropyrn b 144.3 100.7 b

Alkenes C C chemicl shifts 110-150 ppm 4-methyl-2-penten-1-one 154.8 b 124.3 H 3 C H 3 C b CH 3

Aromtics chemicl shifts C 110-175 ppm nitrobenzene c b N 2 c b d d

Aromtics chemicl shifts C 110-175 ppm p-cymene CH 3

Aromtics chemicl shifts C 110-175 ppm dichlorobenzenes Cl Cl Cl Cl Cl Cl

chemicl shifts Alkynes 2-heptyne C C 65-90 ppm CH 3 CH 2 CH 2 CH 2 b C C CH 3 79.4 75.3 b

Alkyl Hlides C C chemicl shifts I Br -5-40 ppm 25-65 ppm 1-chloropentne C Cl 35-80 ppm CH 3 CH 2 -CH 2 -CH 2 -CH 2 -Cl 45.1

Alcohols, Ethers & Amines 2-hexnol C-R C-NR 2 chemicl shifts 50-80 ppm 40-60 ppm H CH 3 CH 2 CH 2 CH 2 CHCH 3 68.0

Alcohols, Ethers & Amines 1,3-dioxne C-R C-NR 2 chemicl shifts 50-80 ppm 40-60 ppm c b b c

Alcohols, Ethers & Amines N-methylisobutylmine C-R C-NR 2 chemicl shifts 50-80 ppm 40-60 ppm b d N H c d b c

Crbonyl Compounds ldehydes & ketones 185-220 ppm crboxylic cids, esters, mides, etc. 155-185 ppm nitriles 110-140 ppm

Aldehydes & Ketones 2-hexnone R R C H C R' chemicl shifts 185-200 ppm 205-220 ppm CH 3 C CH 2 -CH 2 -CH 2 -CH 3 209.0

chemicl shifts 13 R C H 175-185 ppm Crboxylic Acid Derivtives methcrylic cid R R C C R' NR' 2 165-175 ppm 165-175 ppm H C C CH 2 CH 3 173.5

chemicl shifts 13 R C H 175-185 ppm Crboxylic Acid Derivtives heptyl cette R R C C R' NR' 2 165-175 ppm 165-175 ppm CH 3 C -CH 2 CH 2 -CH 2 -CH 2 -CH 2 -CH 2 -CH 3 b 64.6 b 171.0

chemicl shifts 13 R C H 175-185 ppm Amides N-methyl-6-hexnelctm R R C C R' NR' 2 165-175 ppm 165-175 ppm d 36.9 b b N CH 3 c 51.3 c 175.7 d 35.7

chemicl shifts Nitriles hexnenitrile R C N 110-140 ppm CH 3 CH 2 CH 2 CH 2 C N 119.9

Heteronucler Coupling to Deuterium multiplicity D C b J b = 45 Hz multiplicity = 2nI + 1 where: n = # of nuclei I = spin reltive intensity

Solvent Peks CDCl 3 D 3 C(S=)CD 3

Heteronucler Coupling to 19 F fluorotribromomethne F C J F = ~350 Hz F C C b J Fb = ~50 Hz 1 J = 370 Hz

Heteronucler Coupling to 19 F 2,2,2-trifluoroethnol (proton decoupled) F C J F = ~350 Hz F C C b J Fb = ~50 Hz 2 J = 35 Hz 1 J = 278 Hz

Heteronucler Coupling to 19 F commonly observed systems F C J F = ~350 Hz F C C b J Fb = ~50 Hz F 3 C C R F 3 C S R trifluorocettes trifluoromethnesulfontes (trifltes)

P C P C C b Heteronucler Coupling to 31 P J P, J Pb vrible tetrmethylphosphonium chloride (proton decoupled) 1 J = 56 Hz

P C P C C b Heteronucler Coupling to 31 P J P, J Pb vrible dimethyl methylphosphonte (proton decoupled) 2 J = 6 Hz 1 J = 144 Hz

1 H Nucler Mgnetic Resonnce How to Interpret 13 C NMR Spectrum 1. Get n verview identify ny reference solvents in proton decoupled spectrum 2. Symmetry: count the number of crbons (remember 13 C is not integrted) verify crbon count bsed on the moleculr formul is there ny symmetry? - rrely see overlp of peks in bsence of symmetry - ok to see fewer crbons (if resonble); not oky to hve more! 3. Chemicl Shift: determine the chemicl shift of ech resonnce in the spectrum - wht functionl groups my be present - consider the presence of heterotoms 4. If Needed Collect DEPT Dt determine how mny Hs re on ech crbon 5. Put it ll Together: often helpful to consider 1 H NMR dt simultneously

1 H Nucler Mgnetic Resonnce Reporting 13 C NMR Dt (1H decoupled) ppm 119.90 30.87 25.21 21.96 17.11 13.78 Int 261 970 1000 920 814 950 CH 3 CH 2 CH 2 CH 2 CH 2 C N 13 C NMR (25 MHz, CDCl 3 ) δ 119.9, 30.9, 25.2, 22.0. 17.1, 13.8.

1 H Nucler Mgnetic Resonnce Reporting 13 C NMR Dt (1H decoupled) list chemicl shift of ech pek to 1 deciml plce* 13 C NMR (25 MHz, CDCl 3 ) δ 119.9, 30.9, 25.2, 22.0. 17.1, 13.8. frequency (1/4 1 H frequency) solvent *if two peks round to sme vlue, cn dd second deciml plce (e.g. 69.87, 69.89);

Chemicl Shift