Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei

Similar documents
arxiv:nucl-th/ v2 12 Dec 2000

arxiv: v1 [nucl-th] 26 Mar 2013

arxiv: v1 [nucl-th] 10 Apr 2018

Superscaling analyses of inclusive electron scattering and their extension to charge-changing neutrino cross sections in nuclei

Density Dependence of Parity Violation in Electron Quasi-elastic Scattering

Nuclear effects in neutrino scattering

Tina Leitner Oliver Buß, Ulrich Mosel und Luis Alvarez-Ruso

Inelastic scattering

FINAL-STATE INTERACTIONS IN QUASIELASTIC ELECTRON AND NEUTRINO-NUCLEUS SCATTERING: THE RELATIVISTIC GREEN S FUNCTION MODEL

J.M. Udías Ladek 2009

Semi-inclusive neutrino-nucleus reactions

Neutrino Interaction Physics for Oscillation Analyses

Effective spectral function for quasielastic scattering on nuclei

Electroweak Interactions with nuclei: The Relativistic Mean Field Approach

arxiv: v1 [nucl-th] 1 Jun 2007

Superscaling in a Dilute Fermi Gas and the Nucleon Momentum Distribution in Nuclei

Unraveling the ν-nucleus Cross-Section

Superscaling and neutral current quasielastic neutrino-nucleus scattering beyond the relativistic Fermi gas model

Coulomb Corrections in Quasielastic Scattering off Heavy Nuclei

Nuclear effects on the determination of neutrino oscillation parameters

arxiv: v2 [nucl-th] 16 Jul 2018

Nuclear aspects of neutrino energy reconstruction in current oscillation experiments

PAVIA. Carlotta Giusti Matteo Vorabbi Franco Pacati Franco Capuzzi Andrea Meucci

arxiv: v1 [nucl-th] 4 Mar 2011

Studying Nuclear Structure

arxiv:nucl-th/ v2 30 Jun 2003

2. Hadronic Form Factors

Neutrino-Nucleus Scattering at MINERvA

Currents and scattering

Implications of G p E(Q 2 )/G p M(Q 2 ).

Study of second-class currents effects on polarization characteristics in quasi-elastic neutrino (anti-neutrino) scattering by nuclei

Charged Current Quasielastic Analysis from MINERνA

Strange Electromagnetic and Axial Nucleon Form Factors

Neutrino-Nucleus Interactions. Ulrich Mosel

arxiv: v4 [hep-ex] 29 Jan 2018

NUCLEAR EFFECTS IN NEUTRINO STUDIES

Theory overview on neutrino-nucleon (-nucleus) scattering

Coulomb Sum Rule. Huan Yao Feb 16,2010. Physics Experiment Data Analysis Summary Collaboration APS April Meeting

Inclusive Electron Scattering off 4 He

Electron-positron production in kinematic conditions of PrimEx

arxiv:nucl-th/ v2 20 May 2003

DEEP INELASTIC SCATTERING

Neutrino interactions and cross sections

Many-Body Theory of the Electroweak Nuclear Response

Radiative Correction Introduction. Hanjie Liu Columbia University 2017 Hall A&C Analysis meeting

Dr Victoria Martin, Spring Semester 2013

The Development of Particle Physics. Dr. Vitaly Kudryavtsev E45, Tel.:

Role of the N (2080) resonance in the γp K + Λ(1520) reaction

Model independent extraction of the axial mass parameter in CCQE anti neutrino-nucleon scattering

Meson Exchange Current (MEC) model in Neutrino Interaction Generator

Outline. Charged Leptonic Weak Interaction. Charged Weak Interactions of Quarks. Neutral Weak Interaction. Electroweak Unification

Weak interactions. Chapter 7

Nucleon Electromagnetic Form Factors: Introduction and Overview

Introduction to Neutrino Interaction Physics NUFACT08 Summer School June 2008 Benasque, Spain Paul Soler

Valence quark contributions for the γn P 11 (1440) transition

Introduction to particle physics Lecture 6

Coherent Neutrino Nucleus Scattering

Summary Int n ro r d o u d c u tion o Th T e h o e r o e r t e ical a fra r m a ew e o w r o k r Re R s e ul u ts Co C n o c n lus u ion o s n

Covariant quark-diquark model for the N N electromagnetic transitions

Status of Neutrino Cross Sections

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

CHARGED AND NEUTRAL CURRENT NEUTRINO INDUCED NUCLEON EMISSION REACTIONS

Axial currents in electro-weak pion production at threshold and in the -region

Particle Physics I Lecture Exam Question Sheet

Tau Polarization in Tau-Neutrino Nucleon Scattering

Electroproduction of p-shell hypernuclei

Nuclear Binding Effects in Relativistic Coulomb Sum Rules

. α β γ δ ε ζ η θ ι κ λ μ Aμ ν(x) ξ ο π ρ ς σ τ υ φ χ ψ ω. Α Β Γ Δ Ε Ζ Η Θ Ι Κ Λ Μ Ν Ξ Ο Π Ρ Σ Τ Υ Φ Χ Ψ Ω. Wednesday March 30 ± ǁ

Standard Model of Particle Physics SS 2013

Inclusive Electron Scattering from Nuclei and Scaling

arxiv: v1 [hep-ph] 31 Jan 2018

Ulrich Mosel TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAAAA

A path to lepton-nucleus reactions from first principles

Resolving the axial mass anomaly

Applications of nuclear physics in neutrino physics

Neutrino-Nucleus Interactions and Oscillations

arxiv: v1 [hep-ph] 19 Aug 2009

BABAR Measurement of Baryon Form Factors Connecting Time and Space Regions

arxiv: v1 [nucl-th] 13 Apr 2011

Nucleon form factors and moments of GPDs in twisted mass lattice QCD

O problemach z opisem produkcji pionów w oddziaªywaniach neutrin

NC photon production: nuclear models and pion electro- & photo-production

Neutrino cross sections for future oscillation experiments

Experimental Aspects of Deep-Inelastic Scattering. Kinematics, Techniques and Detectors

Proton Elastic Scattering and Neutron Distribution of Unstable Nuclei

Neutrino Responses and the Long Baseline Program

arxiv:nucl-th/ v1 3 Jul 1996

On the measurements of neutrino energy spectra and nuclear effects in neutrino-nucleus interactions

1 The pion bump in the gamma reay flux

MINOS. Luke A. Corwin, for MINOS Collaboration Indiana University XIV International Workshop On Neutrino Telescopes 2011 March 15

Weak interactions, parity, helicity

Coulomb corrections in quasi-elastic scattering: tests of the effective-momentum approximation. Abstract

The Study of ν-nucleus Scattering Physics Interplay of Cross sections and Nuclear Effects

Unified description of lepton-nucleus scattering within the Spectral Function formalism

High t form factors & Compton Scattering - quark based models. Gerald A. Miller University of Washington

Neutrino Energy Reconstruction Methods Using Electron Scattering Data. Afroditi Papadopoulou Pre-conference, EINN /29/17

1 Introduction Background Scaling Elastic Scattering Inelastic Scattering Resonances...

arxiv: v1 [nucl-th] 29 Nov 2012

4. The Standard Model

Istituto Nazionale Fisica Nucleare

Transcription:

Using Electron Scattering Superscaling to predict Charge-changing Neutrino Cross Sections in Nuclei Maria B. Barbaro University of Torino (Italy) and INFN Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 1

Collaboration J.E. Amaro (Granada) M.B. B. (Torino) J.A. Caballero (Sevilla) T.W. Donnelly (MIT) C. Maieron (Catania) A. Molinari (Torino) I. Sick (Basel) Phys. Rev. C 71 (2005) 015501 [arxiv:nucl-th/0409078] Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 2

Motivation The interpretation of neutrino experiments requires good control of nuclear physics From (e, e ) we know that nuclear effects can be large Can we extract predictions for ν-a in the QEP and regions from e-a experimental cross sections? General strategy [1.] Extract scaling function from (e, e ) data, embodying the nuclear physics content of the problem [2.] Invert the scaling approach to predict (ν l, l) cross sections in the few-gev region Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 3

Summary General formalism for charge-changing ν-nucleus scattering y-scaling in inclusive electron scattering: the quasi-elastic peak (QEP) the -resonance region Predictions for (ν, µ) and ( ν, µ) cross sections Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 4

Charge-changing neutrino cross section Cross section in lab. frame [ d 2 σ ] dωdk χ σ 0 F 2 χ χ = + χ = for neutrinos for antineutrinos σ 0 (G cos θ c) 2 [ 2π 2 k cos θ/2 ] 2 Fermi G = 1.16639x10 5 GeV 2 Cabibbo cos θ c = 0.9741 θ=generalized scattering angle tan 2 θ/2 Q 2 v 0, v 0 (ɛ + ɛ ) 2 q 2 = 4ɛɛ Q 2 Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 5

Weak responses Generalized Rosenbluth decomposition (q along z) ] Fχ 2 = [ V CC R CC + 2 V CL R CL + V LL R LL + V T R T [ + χ 2 V ] T R T Hadronic tensor: W µν = fi δ(e f E i ω) f J µ (Q) i i J ν (Q) f R CC = W 00, R CL = W 03, R LL = W 33 R T = W 11 + W 22, R T = iw 12 Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 6

Nuclear weak current: J µ = J µ V J µ A Vector and axial-vector contributions R i = Ri V V R T = RT V A + R AA i, i = CC, CL, LL, T R V V CL = ω q RV V CC V CC RCC V V + 2 V CL RCL V V + V LL RLL V V = V L RL V V Full response: F χ 2 = X V V L R V V LL = ω2 q 2 RV V CC CVC X V V L V CC R AA CC + 2 V CL R AA CL + V LL R AA LL X AA V T [ R V V T + R AA T C/L Longitudinal Collapse does not occur for the AA terms. ] XT Transverse 2 V T RT V A X T V/A interference + XC/L AA + X T + χx T Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 7

Relativistic Fermi Gas On-shell nucleons move freely (except for Pauli blocking) inside the nucleus with E p = p 2 + m 2 N and are described by free Dirac spinors u(p, s) One free parameter: k F Lorentz covariance: W µν is a Lorentz tensor Gauge invariance: Q µ J µ = 0 vector current conservation Analytic expressions for response functions Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 8

Analytic integration yields W µν X(RF G) (q, ω) = N m NT F Q 2 k 3 F q U µν X (q, ω)f RF G(ψ X ) X = QE, ; N = Z, N; T F = ɛ F m N U µν X single nucleon tensor RFG superscaling function f RF G (ψ) = 3 4 (1 ψ2 )θ(1 ψ 2 ) is universal: when plotted against ψ no dependence is left either on momentum transfer (scaling of the I kind) or on nuclear species via k F (scaling of the II kind) Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 9

I + II kind scaling superscaling RFG scaling variables (X = QE, ) T X P +1 ω ω 0 X ψ X (q, ω) = T F P 1 ω ω X ωx P = q 2 + m 2 X m N, T0 X = q ρ 2 2 X + Q2 ωρ 4m 2 N 2 X m N, RFG response region 1 ψ X 1 ρ X = 1 + m2 X m2 N Q 2 QE and peaks: ψ X = 0 Energy shift: ω ω = ω E shift ψ X ψ X Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 10

QE CC single nucleon responses Vector and axial-vector currents: j µ = j µ V jµ A [ j µ V = ū(p ) F (1) 1 γ µ + i ] F (1) 2 σ µν Q ν u(p ), 2m N [ j µ A = ū(p ) G A γ µ + 1 ] G P Q µ γ 5 u(p ), 2m N Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 11

s.n. response functions (at leading order in k F /m N ) RL V V = q2 Q 2 R AA CC = ω2 Q 2 R AA LL = q2 Q 2 [ [ [ G (1) E G (1) A G (1) A ( RT V A = 1 m N Q 2 1 + Q2 4m 2 N ] 2 R V V T = Q2 2m 2 N ] 2 RCL AA = ωq Q 2 ] 2 R AA T = 2 ) G (1) M G(1) A G A G A Q2 4m 2 N [ G (1) M [ ] 2 G (1) A ( 1 + Q2 4m 2 N G P ] 2 ) [ ] G (1) 2 A Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 12

single-nucleon responses Elementary reactions ν µ p µ ++, ν µ n µ +, ν µ p µ + 0, ν µ n µ + Associated currents J µ N (q) = T ū( ) α (p, s )Γ αµ u(p, s) T = 3 for ++ and production and = 1 for + and 0 production, u ( ) α (p, s ): Rarita-Schwinger spinor Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 13

Vertex tensor [Alvarez-Ruso, Singh, Vicente Vacas, PRC 59, 3368 (1999)] Γ αµ = [ C V 3 m N (g αµ q/ q α γ µ ) + CV 4 + CV 5 m 2 N + ] (g αµ q p q α p µ ) m 2 N γ 5 [ C A 3 (g αµ q/ q α γ µ ) + CA 4 m N m 2 N ] q α q µ + C A 5 g αµ + CA 6 m 2 N ( g αµ q p q α p µ ) ( g αµ q p q α p µ) CVC C V 6 = 0 PCAC C A 6 = CA 5 m2 N /(m2 π + Q 2 ) Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 14

hadronic tensor w µν = m m N Tr { J µ N (q)j ν N (q) = w µν V V + wµν AA + wµν V A w µν V V = w 1V (g µν + qµ q ν Q 2 ) + w 2V (k µ + 2ρ q µ )(k ν + 2ρ q ν ) w µν AA = w 1A(g µν + qµ q ν Q 2 ) + w 2A(k µ + 2ρ q µ )(k ν + 2ρ q ν ) u 1A q µ q ν Q 2 + u 2A(2q µ k ν + 2k µ q ν ) w µν V A = 4iw 3ɛ αβµν k α q β w i w i (C V,A K ) are obtained by performing the traces } Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 15

Scaling in quasielastic (e, e ) Basic assumption: the QEP is dominated by free ejection of one nucleon e' e γ Q µ µ A-1 P µ P A P µ N e' e γ Q µ ~ σ en S µ P N P A-1 µ P A ~ PWIA µ Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 16

Guided from the RFG result, define an experimental QE scaling function as F (q, ψ QE) [d2 σ/dω e dω] QE S QE Dividing function S QE σ M [ v L G QE L ] + v T G QE T G QE L = q Q 2 G QE T = Q2 2q [ ] ZG 2 Ep + NG 2 En + O(η 2 F ) [ ] ZG 2 Mp + NG 2 Mn + O(η 2 F ) Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 17

Scaling of first kind F (q, ψ ) q F (ψ ) F (, ψ ) Superscaling function f QE (q, ψ ) k F F QE (q, ψ ) Extensively studied in Day et al., Phys.Rev.Lett.59(1987)427; Day, McCarthy, Donnelly & Sick, Ann.Rev.Part.Sci.40 (1990) 357; Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999); Maieron, Donnelly & Sick, Phys.Rev.C65,025502 (2002). Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 18

Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

Scaling og I kind Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

Scaling of II kind (E e = 3.6 GeV, θ e =16 deg.) - linear scale Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

Scaling of II kind (E e = 3.6 GeV, θ e =16 deg.)-semilog scale Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

Longitudinal superscaling function Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

Transverse superscaling function Donnelly & Sick, Phys.Rev.C60,065502 (1999); Phys.Rev.Lett.82, 3212 (1999)

A transverse scaling function can be constructed where no LT separation is available. Assumption: f L is universal. Then 1. Σ L = 1 k F f L σ M v L G L, 2. Σ T = d2 σ dω e dω Σ L 3. f T (ψ ) = Σ T σ M v T G T Maieron, Donnelly & Sick, Phys.Rev.C 65, 025502 (2002)

8 f T 7 6 5 10 0 10-1 10-2 10-3 4 10-4 -2-1.5-1 -0.5 0 0.5 1 3 2 E e θ e = 3.6 GeV = 16 o 1 C Al Fe Au 0-2 -1 0 1 2 3 4 5 Maieron, Donnelly & Sick, Phys.Rev.C 65, 025502 (2002) ψ'

10 f T 8 6 C Fe Au θ e =15 23 30 37 45 55 74 4 2 0-0.5 0 0.5 1 1.5 2 2.5 3 Maieron, Donnelly & Sick, Phys.Rev.C 65, 025502 (2002) ψ'

the longitudinal part of the cross section superscales the transverse part does not : reasonably good scaling of the second kind, but something is breaking the scaling of the first kind, especially above the QE peak: inelastic scattering from the nucleons MEC and their associated correlations (required by gauge invariance) in both 1p-1h and 2p-2h channels initial and final state interaction effects

Fit of QE Superscaling Function

Scaling in the region The scaling analysis performed in the QEP can be extended to the -resonance peak To isolate the contributions in the region, we use the following procedure: [ ] d 1. 2 σ dω e = 1 dω k QE F f QE (ψ QE )σ M(v L G L + v T G T ) [ ] [ ] [ ] 2. = d 2 σ dω e dω d 2 σ dω e dω tot 3. superscaling function d 2 σ dω e dω QE

f (q, ψ ) k F [d 2 σ/dω e dω] σ M[v L G L +v T G T ] Dividing factors G L = κ 2τ [ N {( 1 + τρ 2 ) w 2 (τ) w 1 (τ) }] + O(η 2 F ) G T = 1 κ [ N { w 1 (τ) }] + O(η 2 F )

N single-baryon responses: w 1 (τ) = ν 1 w 2 (τ) = ν 2 [ G 2 M, (τ) + 3G 2 E, [ (τ)] G 2 M, (τ) + 3G 2 E, (τ) + 4τ ] G 2 µ C, (τ) 2 Electric, magnetic and Coulomb N form factors G M, (τ) = 2.97g (Q 2 ) G E, (τ) = 0.03g (Q 2 ) G C, (τ) = 0.15G M, (τ) g (Q 2 ) G Ep(τ) 1 + τ ; G Ep (τ) = 1 [1 + 4.97τ] 2

By doing this subtraction, we remove the impulsive L and T contributions that arise from elastic en scattering, leaving (at least) MEC effects with their associated correlations ( 10-20%) impulsive contributions arising from inelastic en scattering This approach can work only at ψ < 0, since at ψ > 0 other resonances and the tail of DIS start contributing Plot f vs ψ

Amaro et al., Phys.Rev.C71, 015501 (2005) [ 12 C and 16 O data, energies spanned from 0.30 to 4 GeV, angles from 12 to 145 deg.]

Superscaling Function Amaro et al., Phys.Rev.C71, 015501 (2005) [ 12 C and 16 O data, energies spanned from 0.30 to 4 GeV, angles from 12 to 145 deg.]

Amaro et al., Phys.Rev.C71, 015501 (2005)

Test of Superscaling Functions Amaro et al., Phys.Rev.C71, 015501 (2005)

Test of Superscaling Functions Amaro et al., Phys.Rev.C71, 015501 (2005)

Test of Superscaling Functions

Predictions for (ν, µ) f RF G (ψ QE ) f QE (ψ QE ) f RF G (ψ ) f (ψ )

(ν, µ) cross sections; 12 C

( ν, µ) cross sections; 12 C

Angular dependence of ν cross section at the peak

Angular dependence of ν cross section at the peak

# # $ # #! " " "! # " "! & &! " % "! #& $ #! " $ % #! "! " $ #! " #! " # # " QE responses Eν = 1 GeV, RFG! " ' )(

Comparison of superscaling with RFG

Results Dramatic difference between ν and ν at backward angles, since X T X T (constructive interference in ν scattering, cancellation in ν): small changes in the model could have large effects on the predictions for ν In the ν case the T and T responses dominate (CC, CL, LL < 5%) in both QEand regions The QE and contributions are comparable for θ 90 o RFG (and mean field) predictions differ significantly from the scaling predictions Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 49

Conclusions (e, e ) Scaling is observed in inclusive electron scattering for high energies (several hundred MeV to a few GeV) from the scaling region up to the peak. For the longitudinal contribution it is possible to find a scaling function f QE which, when plotted versus ψ QE, is seen to superscale. This universal scaling function embodies the basic nuclear dynamics in the problem. The scaling function f QE is used to obtain the impulsive part of the transverse response Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 50

The residual is analyzed in terms of a scaling function f by dividing by the elementary N cross section and plotted versus a scaling variable ψ Very good representation of inclusive electron scattering at relatively high energies up to the peak. (ν, l) Invert the scaling procedure: use the empirical scaling functions and the N N and N weak amplitudes to predict charge-changing νa and νa cross sections for the same range of kinematics. Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 51

Future work (in progress): 1. extend the scaling approach to neutral current neutrino and antineutrino scattering 2. microscopic model: role of MEC and associated correlations in ph and 2p2h channels 3. explaining the specific nature of the scaling functions (in particular the asymmetric shape) Maria B. Barbaro NUFACT05, Frascati, June 21-26, 2005 Page 52

J.A. Caballero et al., nucl-th/0504040 Page 53

$ J.A. Caballero et al., nucl-th/0504040 Page 54 % # "!

FINE