Flavor in the scalar sector of Warped Extra Dimensions a. Manuel Toharia

Similar documents
Theories with Compact Extra Dimensions

S = 2 decay in Warped Extra Dimensions

ELECTROWEAK BREAKING IN EXTRA DIMENSIONS MINI REVIEW. Gero von Gersdorff (École Polytechnique) Moriond Electroweak Session, La Thuile, March 2011

BEYOND THE SM (II) Kaustubh Agashe (University of Maryland)

Extra-d geometry might also explain flavor

Composite Higgs and Flavor

arxiv: v1 [hep-ph] 31 Jan 2013

The Standard Model and Beyond

Inter-brane distance stabilization by bulk Higgs field in RS model

Lepton flavour violation in RS models

Higgs-Radion mixing and the LHC Higgs-like excesses

FLAVOUR IN WARPED EXTRA DIMENSIONS

Dark matter and collider signatures from extra dimensions

S 3 Symmetry as the Origin of CKM Matrix

Introduction : Extra dimensions. Y. Hosotani, PPP2011, YITP, 8 March 2011, - 2

BSM Higgs Searches at ATLAS

Yuhsin Tsai Cornell/Fermilab Warped Penguins 1/38

Low Scale Flavor Gauge Symmetries

Heavy Electroweak Resonances at the LHC

Teoria e fenomenologia dei modelli di Higgs composto. Roberto Contino - CERN

Dipole operator constraints on composite Higgs models

Higgs-Radion Mixing in the RS and LHC Higgs-like Excesses

Higgs-Radion mixing in the Randall Sundrum model and the LHC Higgs-like excesses

Exotic Dark Matter as Spin-off of Proton Stability. Kaustubh Agashe (University of Maryland)

STABILIZING EXTRA DIMENSIONS

Higgs Physics as an Indirect BSM Probe

LHC Higgs Signatures from Extended Electroweak Guage Symmetry

The Higgs boson. Marina Cobal University of Udine

FLIGHT OF THE WARPED PENGUINS. In collaboration with Csaba Csáki, Yuval Grossman, and Yuhsin Tsai. Pheno 2011, 10 May 2011

Warped Models in String Theory

Compositeness at ILC250?

The Dilaton/Radion and the 125 GeV Resonance

Top quark effects in composite vector pair production at the LHC

The Higgs as a composite pseudo-goldstone boson. Roberto Contino - CERN

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Elementary/Composite Mixing in Randall-Sundrum Models

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Andreas Crivellin. Flavor Physics beyond the Standard Model

Search for Higgs Bosons at LEP. Haijun Yang University of Michigan, Ann Arbor

Higgs Signals and Implications for MSSM

EXOTICA AT LHC. Philippe Miné LPNHE-Ecole Polytechnique, IN2P3-CNRS, France CMS collaboration.

Flavor Violating Higgs Decays

Finding the Higgs boson

Search for extra dimensions at LHC

Accidental SUSY at the LHC

Searching for Extra Space Dimensions at the LHC. M.A.Parker Cavendish Laboratory Cambridge

Theory Perspective of Top Production: Top Resonances. Tim M.P. Tait

Composite Higgs/ Extra Dimensions

Can the Hbb coupling be equal in magnitude to its Standard Model value but opposite in sign? Howard E. Haber July 22, 2014

Koji TSUMURA (NTU à Nagoya U.)

Light generations partners at the LHC

Higgs-charm Couplings

Light Higgs Production in Two Higgs Doublets Models type III

B-meson anomalies & Higgs physics in flavored U(1) model

arxiv:hep-ph/ v2 16 Mar 2000

Flavor hierarchies from dynamical scales

Flavor Physics Part 2

Neutrinos and Fundamental Symmetries: L, CP, and CP T

Problems for SM/Higgs (I)

A Minimal Composite Goldstone Higgs model

General scan in flavor parameter space in the models with vector quark doublets and an enhancement in B X s γ process

Discovery of the Higgs Boson

Flavor Violating Higgs Decays

Hunting radions at linear colliders

Warped Penguins. Based on arxiv: In collaboration with Csaba Csáki, Yuval Grossman, Philip Tanedo. LEPP Particle Theory Seminar

Physics at Tevatron. Koji Sato KEK Theory Meeting 2005 Particle Physics Phenomenology March 3, Contents

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

arxiv: v1 [hep-ph] 16 Mar 2017

Lepton Flavor Violation

Higgs Searches and Properties Measurement with ATLAS. Haijun Yang (on behalf of the ATLAS) Shanghai Jiao Tong University

Gauged Flavor Symmetries

Electroweak Symmetry Breaking via Strong Dynamics in the Precision Higgs Era: Extra Dimension and Composite Higgs.

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Aspetti della fisica oltre il Modello Standard all LHC

Aharonov-Bohm Effect and Unification of Elementary Particles. Yutaka Hosotani, Osaka University Warsaw, May 2006

Antonio Pich. IFIC, CSIC Univ. Valencia.

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Double Higgs production via gluon fusion (gg hh) in composite models

Tutorial 8: Discovery of the Higgs boson

Boundary Conditions in AdS Life Without a Higgs

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Fourth SM Family at the LHC: ATLAS prospects. Saleh SULTANSOY

SEARCH FOR EXTRA DIMENSIONS WITH ATLAS AND CMS DETECTORS AT THE LHC

Buried Higgs Csaba Csáki (Cornell) with Brando Bellazzini (Cornell) Adam Falkowski (Rutgers) Andi Weiler (CERN)

Introduction to Supersymmetry

Higgs in the light of Hadron Collider limits: impact on a 4th generation

Mass degenerate Higgs Hunters explore the 2HDM. Howard E. Haber West Coast LHC Theory UC Riverside December 7, 2012

Two Higgs Doublets Model

EXTRA DIMENSIONS I and II

Searching for Beyond Standard Model Physics with Top Quarks at the ATLAS Detector

Higgs Property Measurement with ATLAS

Effects on Higgs Boson Properties From Radion Mixing

Photon Coupling with Matter, u R

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

Chaehyun Yu. in collaboration with P. Ko (KIAS) and Yuji Omura (Nagoya University) The 16 th LHC Physics Monthly Meeting, KIAS, Korea, Jun 01,

New Physics Scales to be Lepton Colliders (CEPC)

FLIGHT OF THE WARPED PENGUINS. In collaboration with Csaba Csáki, Yuval Grossman, and Yuhsin Tsai. DAMTP/Cavendish HEP Seminar, 26 May 2011

Probing the Majorana nature in radiative seesaw models at collider experiments

Higgs Boson Phenomenology Lecture I

Lepton non-universality at LEP and charged Higgs

Transcription:

Flavor in the scalar sector of Warped Extra Dimensions a by Manuel Toharia (University of Maryland) at the University of Virginia, Dec. 2, 2009 a Based on PRD80:03506( 09) A.Azatov, M.T., L.Zhu PRD80:0370( 09) A.Azatov, M.T., L.Zhu

Outline Introduction Flavor Anarchy Radion Pheno and Flavor Higgs FCNC s Conclusions

Introduction Warped Extra Dimension s double motivation Address Planck-TeV hierarchy [Randall,Sundrum](RS) Bulk SM with Fermion localization: Flavor hierarchies [Davoudiasl,Hewett,Rizzo];[P omarol,gherghetta];[n eubert,grossman];... RS Metric Background : ds 2 = e 2ky η µν dx µ dx ν dy 2 Exponential factor warps down mass scales graviton localized near y = 0 Boundary (Planck or UV brane) Higgs localized near the other Boundary (TeV or IR brane)

Gravity Sector Planck TeV g 0 ΜΝ Φ g n ΜΝ RS Metric Background : ds 2 = e 2ky η µν dx µ dx ν dy 2

Matter in the Bulk Planck Higgs TeV c o A o Μ, G o Μ t o u o A n Μ, G n Μ Precision Electroweak Constraints M KK > 3 TeV [Agashe,Delgado,May,Sundrum](03);[Agashe,Contino(06)]; [Carena,Ponton,Santiago,Wagner(06)(07)]; [Contino,DaRold,Pomarol(07)]..

S = Fermion localization: Flavor! d 4 xdy [ i ( g QΓ A D A Q D A QΓ A Q ) + i (ŪΓ A D A U D A ŪΓ A U ) 2 2 +c Q k QQ c u k ŪU + ( Y QHU + h.c. )] Massless Fermion mode profiles Q 0 L(y) e (/2 c Q)ky UR(y) 0 e (/2 c u)ky In flat ED, SEVERE flavor problem M KK > 00 5000 TeV [Delgado,P omarol,quiros] Much milder in Warped case M KK > 5 40 TeV [Csaki,Falkowski,Weiler]; [Agashe,Azatov,Zhu]

Planck Higgs TeV c o t o A o Μ, G o Μ u o A n Μ, G n Μ

Flavor Anarchy Fermion profiles Let f i = Ψ i (y TeV ) Ψ i (y) e (/2 c i)ky ( profile at the TeV brane) SMALL hierarchy in c i s LARGE hierachy in f i s Fermion mass matrix from Y ij HQ i U j 5D Yukawa Y ij m ij = v 2 f QiY ij f uj anarchic and O() Mass matrices still hierachical f Q f u f Q f u2 f Q f u3 m u f Q2 f u f Q2 f u2 f Q2 f u3 f Q3 f u f Q3 f u2 f Q3 f u3 ǫ 4 ǫ 3 ǫ 2 ǫ 3 ǫ 2 ǫ ǫ 2 ǫ

Diagonalize mass matrices: U Qu m u W u = m diag u U Qd m d W d = m diag d SM Fermion physical masses hierarchical m ui v f Qi f ui f Q f Q f Q2 f Q3 f U Qd,U Qu Q f f Q2 Q2 f Q3 W u f u f u2 f u f u2 f u f u3 f u f u3 f u2 f u3 f u2 f u3 f Q f Q3 W d f Q2 f Q3 f d f d2 f d f d2 f d f d3 f d f d3 f d2 f d3 f d2 f d3

SM CKM matrix V CKM = U Q u U Qd = λ λ 3 λ λ 2 U Q u U Qd λ λ 3 λ λ 2 λ 3 λ 2 λ 3 λ 2 W u m u m c λ m u m t λ 3 m u m m c c λ m t λ 2 W d m d m s λ m d m b λ 3 m d m s λ m s m b λ 2 m u m t λ 3 m c m t λ 2 m d m b λ 3 m s m b λ 2 with λ.22 cabibbo angle

The Radion and its interactions In the RS model [Randall,Sundrum,( 98)] the background metric g o AB is defined by ds 2 = e 2σ η µν dx µ dx ν dy 2 = R2 z 2 ( ηµν dx µ dx ν dz 2) with σ(y) = ky (and R = /k). Hierarchy created between the two boundaries at y = 0 and y = πr 0 (z = R and z = R ). The linear metric perturbations h AB (x,y) can be reduced to ds 2 = ( e 2σ η µν + [ e 2σ h TT µν (x,y) η µν r(x) ]) dx µ dx ν + ( + 2e 2σ r(x) ) dy 2 (the graviscalar r(x) is massless. A stabilization mechanism providing it with mass is assumed for example[golberger,wise( 99)])

Ex. RS - Matter on the brane S int (r) = Λ r dx 4 T µ µ φ 0 (x) Higgs H γ Gluon W,Z f α 8π Higgs-like couplings! [ ] α s φ 0 F 8π /2 (τ i )/2 b 3 G µν G µν Λ i r [ ] e 2 i NcF i φ 0 i (τ i ) (b 2 + b Y ) F µν F µν Λ r φ 0 i MV 2 V α V α Λ r φ 0 m f ff Λ r α s 8π α 8π [ ] F /2 (τ i )/2 i [ ] e 2 i NcF i i (τ i ) i H v M2 V V α V α H v m f ff H v G µνg µν H v F µνf µν

Radion Production vs. Higgs production 0 2 0 0 0 σ (pb) 0 0 2 0 3 LHC 0 4 0 5 0 6 gg fusion WW,ZZ fusion Wφ Zφ qq, gg > tt φ Tevatron Run2 0 7 200 400 600 800 000 m φ (GeV) K.Cheung ( 00)(Λ φ = TeV) (CMS TDR)

Radion Branchings vs. Higgs Branchings 0. gg bb ZZ WW Br Φ XX 0.0 0.00 ΓΓ hh tt Ξ 0 0 4 0 5 BULK FIELDS RS 00 200 300 400 500 600 m Φ Branchings of the radion vs. its mass m φ Branchings of Higgs vs. its mass (from CMS TDR)

LHC REACH in (m φ Λ φ )

Radion couplings to 5D fermions family of bulk fermions and a Brane Higgs: [Csaki,Hubisz,Lee(07)] φ 0 Λ r (c U + c Q )m u ūu 5D Computation involved. Simple exlanation, L dependence m u (L) Y v(l)f Q (L)f u (L) Y v(l)e ( c Q c U )kl m o e (c U+c Q )k Radion can be understood as a fluctuation of the radius L. k(l + δl) kl + φ Λ r The linear radion fluctuation in the mass term is m u (L + δl) = m u (kl) φ Λ r (c U + c Q ) m o e (c U+c Q )kl = m u (kl) φ Λ r (c U + c Q ) m u

We extend to 3 families and allow for bulk Higgs (localized towards IR brane) A.Azatov,M.T.,L.Zhu PRD80;0370( 09) φ 0 (c i Q + c j D Λ ) mij d r d i Ld j R + h.c φ 0 Λ r dl (c Q m d + m d c D )d R m d not in the diagonal physical basis; c Q,D are NON-DEGENERATE diagonal matrices. tree-level FCNC s! Diagonalize fermion mass matrix means here [ (U Q d c Q U Qd ) m d diag + m d diag (W d c DW d ) φ 0 Λ r d phys L ] d phys R

In the physical basis we obtain the estimate: L rfv = Λ r a d ij m d i md j φ 0 d i L d j R + h.c. a d ij (c Q + c D ) (c Q c Q2 )λ ms m d G(c Qi )λ 3 mb m d (c D c D2 ) λ md m s (c Q2 + c D2 ) (c Q2 2 )λ2 mb m s F(c Di ) λ 3 md m b (c D2 c D3 ) λ 2 ms m b ( 2 + c D 3 ) where we have taken c Q3 = (IR localized) and λ 0.22. 2 F and G are O(.) functions of the c i s a ds a sd 0.06

Tree level RADION exchange will induce s L d R s R d L with coefficient C 4 = a ds a sd m d m s m 2 φ Λ2 r K K mixing and ǫ K put tight bounds Radion interaction scale r GeV 25 000 20 000 5 000 0 000 5000 a ds 0.03 a ds 0.2 a ds 0.5 0 0 20 50 00 200 500 Radion mass m r GeV 25 000 20 000 5 000 0 000 5000 M KKG MPl R GeV Figure : Bounds in m φ Λ r plane from ǫ K. [A.Azatov,M.T.,L.Zhu] Bounds on lighter radion even stronger [Ponton,Davoudiasl]

Tree level Higgs FCNC s Effective Theory Approach [Buchmuller,Wyler(86)], [delaguila,perez-victoria,santiago(00)] [Agashe,Contino(09)] Consider in 4D effective action, Dim 6 operators (down sector): λ ij H 2 Λ 2 HQ L i D Rj Corrections to mass matrix ( ) v4 2 v 4 y ij + λ ij Λ 2 Correction to Higgs Yukawa couplings ( ) v4 2 h y ij + 3λ ij Λ 2 2 Q L i D Rj

Tree level Higgs FCNC s Effective Theory Approach [Buchmuller,Wyler(86)], [delaguila,perez-victoria,santiago(00)] [Agashe,Contino(09)] Consider in 4D effective action, Dim 6 operators (down sector): λ ij H 2 Λ 2 HQ L i D Rj k D ij H 2 Λ 2 D R i /D Rj k Q ij H 2 Λ 2 Q L i /Q Lj Corrections to mass matrix (also from canonical normalization) ( ) ( ) ( ) v4 2 v 4 y ij + λ ij Q Λ 2 Li D Rj δ ij /2 + kij D v4 2 D Λ 2 Ri /D Rj δ ij /2 + k Q v4 2 ij Q Λ 2 Li /Q Lj Correction to Higgs Yukawa couplings ) h 2 ( Q Li D Rj 2kij D ( y ij + 3λ ij v 2 4 Λ 2 v ) h 2 ( D Λ 2 Ri /D Rj 2k Q ij v 4 Λ 2 ) h 2 Q Li /Q Lj

Higgs Couplings Q and U 5d fermions Q = Q L + Q R and U = U L + U R Bulk Higgs d 5 x Y H QU Y HQ L U R + Y 2 HQ R U L with Y = Y 2 Brane Higgs dx 4 Y HQ L U R + Y 2 HQ R U L with Y Y 2

Higgs FCNC s in RS [Casagrande et.al.(08); Blanke et.al.(09); Buras et.al.(09)] H H H Y Y q L D R q L Y H H q L d R Y Y d R Q L d R m d SM v f Q Y f d ( f 2 Q Y d SM f Q Y f d ( 2f 2 Q Y 2 v 2 M 2 KK Y 2 v 2 M 2 KK ) fd 2 Y 2 v 2 MKK 2 ) 2fd 2 Y 2 v 2 MKK 2 m d SM Y d SMv m d SM Y 2 v 2 M 2 KK ( f 2 Q + f 2 d)

Higgs FCNC s in RS [Agashe, Contino(09); Azatov,M.T.,Zhu(09)] H H H H Y Y Y 2 Y q L d R q L D R D L Q R Q L d R m d SM v f Q Y f d ( Y Y 2 v 2 M 2 KK ( YSM d f Q Y f d 3 Y ) Y 2 v 2 MKK 2 m d SM Y d SMv m d SM 2 Y Y 2 v 2 M 2 KK )

Define : Tree-level Higgs FCNC s! m d L HFV = a d i md j ij H v d i Ld j 4 2 R + h.c. Solve perturbatively in (Y v 4 /M KK ): λ ms a d ij δ ij Ȳ 2 v4 2 m d MKK 2 λ λ 3 mb m d md m s λ 2 mb m s λ 3 md m b λ 2 ms m b a u ij δ ij Ȳ 2 v 2 4 M 2 KK λ λ m c m u λ 3 m t m u mu m c λ 2 m t m c λ 3 mu m t λ 2 mc m t

Tree level HIGGS exchange will induce s L d R s R d L with coefficient C 4 = a ds a sd m d m s m 2 h v2 4 K K mixing and ǫ K put tight bounds 20 000 FCNC Preferred Y 5 D, 3 20 000 75 quantile FCNC Preferred Y 5 D 2, 6 5 000 5 000 Estimate Higgs exchange MKKG 0 000 75 quantile Estimate Higgs exchange KK gluon exchange MKKG 0 000 25 quantile 5000 25 quantile 5000 KK gluon exchange Disfavored from FCNC s 0 00 50 200 300 500 700 000 m h Disfavored from FCNC s 0 00 50 200 300 500 700 000 m h Figure 2: Bounds from ǫ K in(m h -M KK )plane from Higgs exchange

8000 LHC Reach for t ch 7000 6000 Median MKKG 5000 4000 3000 2000 Y 5 D, 4 Median Y 5 D 3, 3 Observable at LHC 000 00 0 20 30 40 50 60 70 Figure 3: LHC observability t ch in the plane (m h,m KKG ). m h (using [Aguilar Saavedra,Branco(00)] study)

200 50 N of points per bin 50 00 50 N of points per bin 00 50 0 0.5 0.6 0.7 0.8 0.9.0 a bb 0 0.5 0.6 0.7 0.8 0.9.0 a tt Figure 4: Distribution of a tt and a bb, in our numerical scan, with a fixed KK scale of R = 500 GeV (KK gluon mass M KKG = 2.45R ) and for 5D Yukawas Y ij 5D [0.3, 3].

h bb h WW Br h XX 0. 0.0 0.00 h ΤΤ h gg h bs h ΓΓ h ZZ h tc h tt RS SM 0 4 00 50 200 300 500 700 000 m h Figure 5: Higgs Branchings, for (KKG 3.5TeV) Ȳ 3 and /R = 500 GeV.

Outlook Maybe LHC discovers just one (or two) scalar(s) and that s IT. Is it the SM Higgs? (or a 2 Higgs doublet model?) or is it the radion of RS? (or radion plus a Higgs?) Probing couplings to fermions important (and hard). Higgs production may be significantly enhanced (work in progress) Probing the size of the Flavor structure also important. Flavor at LHC? (t ch, (h,φ) t c, (h,φ) µτ.. ) Linear Collider? Muon Collider? Higgs-radion mixing..

Backup Calculation Down quark Action with a Bulk Higgs, in RS: S = d 4 xdz [ i ( g QΓ A D A Q D A QΓ A Q ) + i (ŪΓ A D A U D A ŪΓ A U ) 2 2 + c Q R QQ + c U R ŪU + ( Y QHU + h.c. )] Decompose Q = Q L Q R mixed KK expansion: and D = D L D R Q L (x,z) = q L (z)q L (x) +... Q R (x,z) = q R (z)d R (x) +... D L (x,z) = d L (z)q L (x) +... D R (x,z) = d R (z)d R (x) +... and perform a

Mixed profile equations m d q L q R + c q + 2 q R + z m d q R + q L + c q 2 q L + z m d d L d R + c d + 2 d R + z m d d R + d L + c d 2 d L + z ( ) R v(z)y d d R = 0 z ( ) R v(z)y d d L = 0 z ( ) R v(z)yd q R = 0 z ( R z Massaging them we arrive at: R ( m d = R 4 md dz z ( d L 2 + q 4 R 2 ) + Rv(z) z 5 R ) v(z)y d q L = 0 ) (Y d d R ql Y d q R d L) 4D Higgs Yukawa is : y d 4 = R 5 R R dz h(z) z 5 (Y d d R q L + Y d q R d L)

Misalignement between 4D fermion mass matrix and Yukawas! R ( ) d = R 4 md dz z ( d L 2 + q 4 R 2 ) 2Yd Rv(z) q z 5 R d L. R

Higgs Production - work in progress H glu glu coupling: top quark and KK tower Even if top Yukawa reduced, extra KK tops render the coupling SM-like light quarks and KK tower If shifts in the light quarks yukawa is δ, the KK tower contributes by (δ) Overall coupling becomes + 5δ wrt SM contribution.