Modeling PIN Photodiodes

Similar documents
Modeling PIN Photodiodes. Roger W. Pryor, Ph.D.,VP Research Pryor Knowledge Systems, Inc.

Design and Optimization of An All Optically Driven Phase Correction MEMS Device using FEA

Semiconductor Physics fall 2012 problems

Solution 11:00 AM, Wednesday February 10, 2010, 108 Nedderman Hall 80 minutes allowed (last four digits of your student #) ( if new)

Semiconductor Physics Problems 2015

Heat Transfer in Crossflow Heat Exchangers for Application with Microreactors

Review Energy Bands Carrier Density & Mobility Carrier Transport Generation and Recombination

Expanding Your Materials Horizons

Schottky Rectifiers Zheng Yang (ERF 3017,

Modeling Internal Heating of Optoelectronic Devices Using COMSOL

ECE-342 Test 2 Solutions, Nov 4, :00-8:00pm, Closed Book (one page of notes allowed)

Quiz #1 Practice Problem Set

Semiconductor Physics fall 2012 problems

Diodes. anode. cathode. cut-off. Can be approximated by a piecewise-linear-like characteristic. Lecture 9-1

Junction Diodes. Tim Sumner, Imperial College, Rm: 1009, x /18/2006

n N D n p = n i p N A

Diodes. EE223 Digital & Analogue Electronics Derek Molloy 2012/2013.

Semiconductor Junctions

Electronic PRINCIPLES

Solid State Electronics. Final Examination

6.012 Electronic Devices and Circuits

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

16EC401 BASIC ELECTRONIC DEVICES UNIT I PN JUNCTION DIODE. Energy Band Diagram of Conductor, Insulator and Semiconductor:

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

Basic Physics of Semiconductors

Lecture 2. Semiconductor Physics. Sunday 4/10/2015 Semiconductor Physics 1-1

For the following statements, mark ( ) for true statement and (X) for wrong statement and correct it.

ECE PN Junctions and Diodes

Blaze/Blaze 3D. Device Simulator for Advanced Materials

Semiconductor Devices and Circuits Fall Midterm Exam. Instructor: Dr. Dietmar Knipp, Professor of Electrical Engineering. Name: Mat. -Nr.

pn JUNCTION THE SHOCKLEY MODEL

MOS Transistor I-V Characteristics and Parasitics

Semiconductors CHAPTER 3. Introduction The pn Junction with an Applied Voltage Intrinsic Semiconductors 136

p-n junction biasing, p-n I-V characteristics, p-n currents Norlaili Mohd. Noh EEE /09

EECS130 Integrated Circuit Devices

Semiconductor Module

Thermionic emission vs. drift-diffusion vs. p-n junction

CLASS 12th. Semiconductors

Sample Exam # 2 ECEN 3320 Fall 2013 Semiconductor Devices October 28, 2013 Due November 4, 2013

Chapter 7. The pn Junction

Engineering 2000 Chapter 8 Semiconductors. ENG2000: R.I. Hornsey Semi: 1

ELECTRONIC DEVICES AND CIRCUITS SUMMARY

Introduction to Semiconductor Devices

Session 6: Solid State Physics. Diode

12/10/09. Chapter 18: Electrical Properties. View of an Integrated Circuit. Electrical Conduction ISSUES TO ADDRESS...

Section 12: Intro to Devices

Photodiodes and other semiconductor devices

1st Year-Computer Communication Engineering-RUC. 4- P-N Junction

collisions of electrons. In semiconductor, in certain temperature ranges the conductivity increases rapidly by increasing temperature

Electronic Circuits for Mechatronics ELCT 609 Lecture 2: PN Junctions (1)

ISSUES TO ADDRESS...

Semiconductor Physics and Devices

L03: pn Junctions, Diodes

PN Junction and MOS structure

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium September 20, 2005

1 Name: Student number: DEPARTMENT OF PHYSICS AND PHYSICAL OCEANOGRAPHY MEMORIAL UNIVERSITY OF NEWFOUNDLAND. Fall :00-11:00

electronics fundamentals

EE 446/646 Photovoltaic Devices I. Y. Baghzouz

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Semiconductor Detectors are Ionization Chambers. Detection volume with electric field Energy deposited positive and negative charge pairs

Introduction to Semiconductor Devices

The Devices: MOS Transistors

Lecture 0. EE206 Electronics I

Lecture (02) Introduction to Electronics II, PN Junction and Diodes I

ECE-305: Spring 2018 Exam 2 Review

Section 12: Intro to Devices

Fundamentals of Semiconductor Physics

Electronics The basics of semiconductor physics

Lecture 3 Semiconductor Physics (II) Carrier Transport

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. EECS 130 Professor Ali Javey Fall 2006

PHYSICAL ELECTRONICS(ECE3540) CHAPTER 9 METAL SEMICONDUCTOR AND SEMICONDUCTOR HETERO-JUNCTIONS

Institute of Solid State Physics. Technische Universität Graz. Exam. Feb 2, 10:00-11:00 P2

FIELD-EFFECT TRANSISTORS

p = {470.5 [1+(N i 2.23E17) ]}+44.9, in cm 2 /V-sec. 14. For electrons in silicon doped primarily with phosphorous, assume

Chap. 11 Semiconductor Diodes

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

EE105 Fall 2015 Microelectronic Devices and Circuits: Semiconductor Fabrication and PN Junctions

Classification of Solids

V BI. H. Föll: kiel.de/matwis/amat/semi_en/kap_2/backbone/r2_2_4.html. different electrochemical potentials (i.e.

( )! N D ( x) ) and equilibrium

Chemistry Instrumental Analysis Lecture 8. Chem 4631

Lecture 6 PN Junction and MOS Electrostatics(III) Metal-Oxide-Semiconductor Structure

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences. Professor Chenming Hu.

Lecture (02) PN Junctions and Diodes

KATIHAL FİZİĞİ MNT-510

The pn junction. [Fonstad, Ghione]

Lecture-4 Junction Diode Characteristics

1 cover it in more detail right away, 2 indicate when it will be covered in detail, or. 3 invite you to office hours.

Free Electron Model for Metals

Carriers Concentration, Current & Hall Effect in Semiconductors. Prof.P. Ravindran, Department of Physics, Central University of Tamil Nadu, India

Free Electron Model for Metals

Concept of Core IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Page 1

Lecture 4 - PN Junction and MOS Electrostatics (I) Semiconductor Electrostatics in Thermal Equilibrium. February 13, 2003

Extensive reading materials on reserve, including

Consider a uniformly doped PN junction, in which one region of the semiconductor is uniformly doped with acceptor atoms and the adjacent region is

Lecture 8 PN Junction and MOS Electrostatics (V) Electrostatics of Metal Oxide Semiconductor Structure (cont.) October 4, 2005

Solid State Physics SEMICONDUCTORS - IV. Lecture 25. A.H. Harker. Physics and Astronomy UCL

Semiconductor-Detectors

UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering Department of Electrical Engineering and Computer Sciences

Transcription:

Modeling PIN Photodiodes Roger W. Pryor*, Ph.D. Pryor Knowledge Systems, Inc. *Corresponding author: 4918 Malibu Drive, Bloomfield Hills, MI 48302, rwpryor@pksez1.com Abstract: This paper presents one approach to the modeling of an abrupt junction PIN photodiode light sensor using COMSOL Multi physics software and the incorporated SPICE capability. The current model is built using the capabilities of SPICE in COMSOL Multiphysics 4.0a. This model demonstrates the use of SPICE and the AC/DC Module to build a conduction current, rather than an electrostatic, model. This model is based on my earlier semiconductor modeling work using the COMSOL Multiphysics 3.X series software. Keywords: PIN, Diode, conduction current. SPICE, upper portion of the chip has a 2µm deep, P doped region (anode) with rounded corners, as is shown in the solution in Figure 2. The interfaces between the various doping regions, P-I-N, are lightly graded, as is standard practice (see Table 1 in the appendix) and is used herein to ease convergence calculations. AC/DC, 1. Introduction Semiconductor device physics is complex, even under the best of circumstances. Multiphysics modeling of semiconductor device structures require that careful attention be paid to the specific details of those models in the areas of physics, mathematics and geometry. This PIN Diode model is a fundamentally simple model in the area of geometrical details. It is, however, somewhat more complex in the areas of physics and mathematics. This model is just somewhat complex in the detailed methodology used to implement the sequence of convergence in the Multiphysics and SPICE portions. The conceptual basis of this model derives from the semiconductor diode model [1] shipped with COMSOL Multiphysics 3.5a. This multiphysics model has been built as a 2D approximation to what would normally be a 3D device, to ease calculation difficulties and facilitate more rapid convergence. Figure 1. PIN Diode Model Builder Figure 2. PIN Diode Solution 2. PIN Diode Model Overview The initial PIN Diode model, without SPICE, as shown in the first Model Builder chart in Figure 1, approximates a silicon chip that has a 10µm by 10µm footprint and a 7µm thickness. The lower portion of the chip (10µm by 10µm) has an enhanced N dopant level (cathode). The Figure 3, below, shows the geometrical configuration of the cross-section view of the semiconductor diode chip. Please note that two points have been added in the anode area to define the extent of the electrical contact on the upper anode surface. The anode contact on the upper surface does not extend to the boundary of

the anode doping (P) volume. The electrical contact (Va applied ) extends between the two points. The remainder of the periphery, outside the anode electrical contact, is insulated, except for the cathode contact, on the bottom of the chip. The PIN Diode electrical contact on the bottom of the chip covers the entire lower surface. can be configured and calculated. However, in order to use any model subsequently with SPICE, that particular model must be configured so that one of that model s electrodes is connected specifically to GROUND. That condition is satisfied in the PIN Diode Model by connecting the electrical contact on the base of the chip (N-type) to GROUND. The Anode contact is set to Va+V_psi_init. The Electric Currents 2 sub-module and the two Transport of Diluted Species sub-modules are next configured for the calculation of the simultaneous electron (cn0) and hole (cp0) densities. The density calculation treats the electrons and holes as a fluid, with one Figure 3. PIN Diode Geometry 3. PIN Diode Model Development As can be seen in the Model Builder chart in Figure 1, the initial COMSOL Multiphysics PIN Diode Model requires calculations employing four (4) uniquely configured COMSOL submodules. The specific physical properties [2-10] of this PIN Diode semiconductor configuration are determined by the Parameters and Variables incorporated into the model and shown in the Parameters Table 1 and the Variables Table 2 in the appendix. The first sub-module, Electric Currents (init), is calculated with sigma_sip assigned to the Pdomain, sigma_sin assigned to the N-domain and V_psi_init, the charge neutrality, applied to both the Anode and Cathode electrical contacts. Figure 4 shows the model Mesh. Failure to calculate the initialization conditions makes the calculation of the remainder of the model either extremely difficult or impossible. Once the initialization conditions have been established, the Electric Currents 2 sub-module Figure 4. PIN Diode Model Mesh density calculation for each carrier, over the entire volume of the device. The electron (cn0) hole (cp0) recombination rate (-RSRH) is included as the built-in internal reaction. The PIN Diode Model is then meshed as shown in Figure 4 and the final result calculated. The final result is as shown in the PIN Diode Solution in Figure 2. 4. PIN Diode Model with SPICE Once the PIN Diode Model has converged, as shown in Figure 2, the physics for the Electrical Circuit sub-module can be added. It is always best, as shown below in the Model Builder Chart in Figure 5, to save the converged model under a new name, so that the work on the converged model is not lost in the process of creating the new model.

After the Electrical Circuit sub-module is added to the model, the Anode contact needs to be changed to a Terminal contact and given a unique node name, in this case the name is 2. 6. PIN Diode Model SPICE Results Figure 7 below shows the current through the PIN Diode in the SPICE circuit for forward bias s (Va) in the range of 2V to 4V. Figure 7. PIN Diode Current in SPICE Circuit Figure 5. Model Builder Chart with SPICE The SPICE circuit comprises a Voltage Source (0,1), a Resistor (1,2), the PIN Diode Model (0,2) and Ground (0), as shown in Figure 6. 7. Conclusions A PIN Diode model has been successfully built using the AC/DC conduction current module and incorporated into a simple SPICE circuit. This paper demonstrated the potential to build increasingly complex semiconductor models using the same methodology. 8. References Figure 6. PIN Diode SPICE Circuit The node numbers are shown in Figure 6 as assigned. 1. Semiconductor Diode, COMSOL Model Library, Version 3.5a, (2008) 2. http://en.wikipedia.org/wiki/energy_band 3. http://en.wikipedia.org/wiki/semi-metal 4. C. Kittel, Introduction to Solid State Physics, Sixth Edition, John Wiley & Sons, New York, 1986, pp 158, 212 5. S.M. Sze, Semiconductor Devices: Physics 1985, Appendix F, pp 513 6. S.M. Sze, Semiconductor Devices: Physics 1985, Appendix F, pp 16-19 7. S.M. Sze, Semiconductor Devices: Physics 1985, Appendix F, pp 71-75

8. S.M. Sze, Semiconductor Devices: Physics 1985, Appendix F, pp 42-43 9. S.M. Sze, Physics of Semiconductor Devices, Wiley-Interscience, 2 nd Edition, 1981. 10. R.A. Smith, Semi-Conductors, Cambridge University Press, 1968. 9. Appendix Table 1: PIN Diode Model Parameters Parameter Value Description q 1.602e-19[C] Elementary charge T 300[K] Room temperature k 1.38e-23[J/K] Boltzmann's constant epsilonr 11.8 Rel. permittivity ni 1.46e10[1/cm^3] Intrinsic mun 800[cm^2/(V*s)] Electron mobility for Si mup 200[cm^2/(V*s)] Hole mobility Dn k*t/q*mun Electron diffusivity Dp k*t/q*mup Hole diffusivity taun 0.1[us] Electron life time taup 0.1[us] Hole life time c q/(k*t) Reciprocal thermal y1 7[um] Diode x1 10[um] Diode ju 1[um] Junction depth ac 4[um] Anode NApmax 1e17[1/cm^3] Maximum p- Parameter Value Description NDn 1e15[1/cm^3] Drift layer n- NDnmax 1e17[1/cm^3] Maximum n- ch ju/sqrt(log( NApmax/NDn)) Doping falloff constant Va 0[V] Applied Vt k*t/q Thermal Vpsi0 0[V] Applied (init) q 1.602e-19[C] Elementary charge T 300[K] Room temperature Table 2: PIN Diode Model Variables n_init p_init V_psi_init RSRH sigma_si (abs(n)/2+sqrt(n ^2/4+ni^2))*(N> =0)+ni^2/(abs(N) /2+sqrt(N^2/4+ni ^2))*(N<0) (abs(n)/2+sqrt(n ^2/4+ni^2))*(N< 0)+ni^2/(abs(N)/ 2+sqrt(N^2/4+ni ^2))*(N>=0) Variable Expression Description N NDn+NDnmax*e xp(- ((y+y1)/ch)^2)- NApmax*exp(- (y/ch)^2)*((abs(x )<ac/2)+(abs(x)> =ac/2)*exp(- ((abs(x)- ac/2)/ch)^2)) Doping 1/c*(- log(p_init/ni)*(n <0)+log(n_init/ni )*(N>=0)) (cn[1/mol]*cp[1/ mol]- ni^2)/(taup*(cn[1 /mol]+ni)+taun*( cp[1/mol]+ni)) q*(cn[1/mol]*mu n+cp[1/mol]*mu p) neutrality electron neutrality hole neutrality Recombination term Conductivity of doped silicon

Variable Expression Description cn0 ni*exp(- Thermal Eq (V_psi0/Vt)) electron cp0 ni*exp(- (V_psi0/Vt)) Thermal Eq hole sigma_sip q*cp0*mup P domain conductivity sigma_sin q*cn0*mun N domain conductivity