Multi-component Determinations using Sequential Injection Analysis

Similar documents
Solid-phase reactors in sequential injection systems. Eliazer Bobby Naidoo

Aspects of the determination of the platinum group elements and arsenic by inductively. coupled plasma mass spectrometry

Kwadratiese rye - Graad 11

Generalised density function estimation using moments and the characteristic function

Hoofstuk 29 Magnetiese Velde a.g.v Elektriese Strome

a b

VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: Totaal / Total:

CAMI EDUCATION. Graad 12 Vraestel I : Rekord eksamen Punte. Lees die volgende instruksies noukeurig deur voordat die vrae beantwoord word:

Eksterne eksaminator / External examiner: Dr. P Ntumba Interne eksaminatore / Internal examiners: Prof. I Broere, Prof. JE vd Berg, Dr.

Vibration Covariate Regression Analysis of Failure Time Data with the Proportional Hazards Model

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

THE EFFECT OF HABITAT CHANGE ON THE STRUCTURE OF DUNG BEETLE ASSEMBLAGES IN THE NORTH-EASTERN FREE STATE: A COMPARISON OF CONSERVED AND FARMED LAND

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: FOONNO. GEDURENDE EKSAMENPERIODE / PHONE NO. DURING EXAM PERIOD:

EXAMINATION / EKSAMEN 19 JUNE/JUNIE 2013 AT / OM 08:00

WTW 263 NUMERIESE METODES / NUMERICAL METHODS

November 2005 TYD/TIME: 90 min PUNTE / MARKS: 35 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER: HANDTEKENING/SIGNATURE:

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA WTW263 NUMERIESE METODES WTW263 NUMERICAL METHODS EKSAMEN / EXAMINATION

EXAMINATION / EKSAMEN 17 JUNE/JUNIE 2011 AT / OM 12:00 Q1 Q2 Q3 Q4 Q5 Q6 TOTAL

SEMESTERTOETS 1 / SEMESTER TEST 1

Oplos van kwadratiese vergelykings: die vind van die vergelyking *

UNIVERSITY OF PRETORIA DEPT SlVlELE INGENIEURSWESE / DEPT OF CIVIL ENGINEERING

3. (d) None of these / Geen van hierdie

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me/Ms R Möller

JUNE 2005 TYD/TIME: 90 min PUNTE / MARKS: 50 VAN/SURNAME: VOORNAME/FIRST NAMES: STUDENTENOMMER/STUDENT NUMBER:

WTW 158 : CALCULUS EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Prof NFJ van Rensburg

MATHEMATICS GRADE 10 TASK 1 INVESTIGATION Marks: 55

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

Funksies en Verwantskappe

HOëRSKOOL STRAND WISKUNDE NOVEMBER 2016 GRAAD 11 VRAESTEL 2

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

KOPIEREG VOORBEHOU / COPYRIGHT RESERVED

Department of Mathematics and Applied Mathematics Departement Wiskunde en Toegepaste Wiskunde

NATIONAL SENIOR CERTIFICATE GRADE 12

Continuous Flow Analysis Methods David Davey University of South Australia. 21 February

UNIVERSITEIT VAN PRETORIA / UNIVERSITY OF PRETORIA DEPT WISKUNDE EN TOEGEPASTE WISKUNDE DEPT OF MATHEMATICS AND APPLIED MATHEMATICS

VAN / SURNAME: VOORNAME / FIRST NAMES: STUDENTENOMMER / STUDENT NUMBER: HANDTEKENING / SIGNATURE: TELEFOON / TELEPHONE:

Reverse Flow Injection Analysis for Determination of Manganese(II) in Natural Water. Jintana Klamtet

Government Gazette Staatskoerant

LIMPOPO DEPARTEMENT VAN ONDERWYS LIMPOPO DEPARTMENT OF EDUCATION- LAERSKOOL WARMBAD

SOP-C-120 Determination of ph

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT

DEVELOPMENT OF ACID-BASE INDICATOR FROM FLOWER PETALS (HIBISCUS SABDARIFFA AND ALLAMANDA)

GRADE 9 - FINAL ROUND QUESTIONS GRAAD 9 - FINALE RONDTE VRAE

3. How many gadgets must he make and sell to make a profit of R1000?

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

MTX221. Sessie 30 DIE KLASSIEKE TWEEDE WET VAN TERMODINAMIKA. Session 30 THE CLASSICAL SECOND LAW OF THERMODYNAMICS. Dr.

Algorithmic Component and System Reliability Analysis of Truss Structures

GRAAD 11 NOVEMBER 2012 WISKUNDIGE GELETTERDHEID V1 MEMORANDUM

BEHAVIOUR OF CEMENTITIOUS SUBBASE LAYERS IN BITUMEN BASE ROAD STRUCTURES

TW 214 TOETS 2 - VOORBEREIDING 2018 TEST 2 - PREPARATION

Summer Review Packet. for students entering. AP Calculus BC

GRADE/GRAAD 11 NOVEMBER 2018 TECHNICAL SCIENCES P1 TEGNIESE WETENSKAPPE V1 MARKING GUIDELINE/NASIENRIGLYN

Graad 12: Rye en Reekse

TRANSPORTE EN VERBANDE/TRANSFERS AND BONDS

Examination Copyright reserved. Eksamen Kopiereg voorbehou. Module EBN122 Elektrisiteit en Elektronika 13 November 2009

Compiled by Korbitec in association with Jan S de Villiers. Afrikaans text of the guidelines edited by Jan S de Villiers.

NASIONALE SENIOR SERTIFIKAAT GRAAD 10

Punte: Intern Marks: Internal WTW 168 : CALCULUS. EKSAMEN / EXAMINATION Eksterne eksaminator / External examiner: Me / Ms R Möller

[1a] 1, 3 [1b] 1, 0 [1c] 1, 3 en / and 1, 5 [1d] 1, 0 en / and 1, 0 [1e] Geen van hierdie / None of these

Graad 4 NWT-afbakening 15 November Afrika, Noord-Amerika, Suid-Amerika, Asië, Europa, Australië, Antarktika

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

Mir Md. Maruf Morshed

CHEMISTRY 135 REVISION OF NAMES, FORMULAE AND EQUATIONS

Real-Time Software Transactional Memory: Contention Managers, Time Bounds, and Implementations

DEVELOPMENT AND MODELLING OF NEW WIDEBAND MICROSTRIP PATCH ANTENNAS WITH CAPACITIVE FEED PROBES

DR. J ROSSOUW Pro In9

A New On-line Cyanide Analyzer for Measurement of Cyanide in Hydrometallurgical Processing of Precious Metal Ores

A THESIS. Submitted by MAHALINGA V. MANDI. for the award of the degree of DOCTOR OF PHILOSOPHY

GRADE 11 - FINAL ROUND QUESTIONS GRAAD 11 - FINALE RONDTE VRAE

NATIONAL SENIOR CERTIFICATE/NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 10

Flow Injection Analysis for the Determination of Ammonia in Exhaust Gas of Thermal Power Plant

Z/zs. tnitiats: wu\ Z-z* I A. sop-c-102. Determination of Chemical Oxygen Demand. Revision 6. Approval: Effective date: 3. Renewat date: 7lt:,:

Supercritical Fluid Extraction Directly Coupled with Reversed Phase Liquid Chromatography for Quantitative Analysis of Analytes in Complex Matrices

CHAPTER 9. Simultaneous Determination of Cadmium(lI) and

Studentenommer: Student number: Volpunte: Full marks: 160 Open / closed book: Oopboek / toeboek: 21 Punt: Mark: BELANGRIK- IMPORTANT

Water erosion risk assessment in South Africa: towards a methodological framework. J.J. Le Roux

SEEKING SPATIAL JUSTICE

Universiteit van Pretoria

Huiswerk Hoofstuk 22 Elektriese velde Homework Chapter 22 Electric fields

NATIONAL SENIOR CERTIFICATE NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12

Tumaini Samwel Peter Mkwizu

PERFORMANCE EVALUATION OF WET-COOLING TOWER FILLS WITH COMPUTATIONAL FLUID DYNAMICS

reaksieproduk lei tot verminderde alkaliherwinning, groter verbruik van suur veroorsaak en ook lei to hoer volumes van die soutafvalstroom.

GRAAD 12 SEPTEMBER 2012 WISKUNDE V3 MEMORANDUM

Addition of n-butyllithium to an Aldimine: On the Role of Chelation, Aggregation, and Cooperative Solvation

INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY

Government Gazette Staatskoerant

Science 9 Chemistry Objectives Greene s Study Guide. By the end of this unit, students are expected to be able to. -WHMIS -MSDS

A detailed kinetic and mechanistic investigation of the multi-step oxidation of [Pt II Cl 4 ] 2- by [Ir IV Cl 6 ] 2- in acidic medium

NATIONAL SENIOR CERTIFICATE/ NASIONALE SENIOR SERTIFIKAAT GRADE/GRAAD 12 SEPTEMBER 2015 MATHEMATICS P1/WISKUNDE V1 MEMORANDUM

!"#$%&'(&)*$%&+",#$$-$%&+./#-+ (&)*$%&+%"-$+0!#1%&

FLOCCULATION OF WASTEWATER FROM THE PRODUCTION OF LOW VOC PAINTS

CMY 117 SEMESTERTOETS 2 / SEMESTER TEST 2

SCATTERING BY A STRIP IN A HOMOGENEOUS MEDIUM

ASSESSMENT OF FREQUENCY DOMAIN FORCE IDENTIFICATION PROCEDURES

THE DECO~WOSITION OF AMMONIA ON TUNGSTEN SURFACES

NATIONAL SENIOR CERTIFICATE GRADE 11

Summer Review Packet. for students entering. IB Math SL

Contents. 1 Matter: Its Properties and Measurement 1. 2 Atoms and the Atomic Theory Chemical Compounds Chemical Reactions 111

Transcription:

Multi-component Determinations using Sequential Injection Analysis by Rosa Elizabeth Taljaard Submitted in partial fulfilment of the requirements for the degree PHILOSOPHIAE DOCTOR in the Faculty of Science University of Pretoria Pretoria October 1999 University of Pretoria

Multi-component Determinations using Sequential Injection Analysis by Rosa Elizabeth Taljaard Promoter: Professor Jacobus F. van Staden Department of Chemistry University of Pretoria Degree: Philosophiae Doctor SYNOPSIS The need to measure several parameters rapidly in the same sample in areas such as clinical chemistry, environmental pollution and industrial control has urged the development of automated meth~ds of analysis. Multiple determinations are feasible, not only because it is more cost-effective, but also because it shortens or eliminates separation steps needed to remove interferences due to closely related species. This results in less sample preparation and eliminates loss of analyte due to long and sometimes ineffective pretreatment methods. Several multi-component sequential injection systems are proposed. These include a novel tandem application of SIA, which is based on an optimised sequence of samples and reagents in the holding coil, as well as the kinetics of the reactions involved, to determine sulphate and iron sequentially or simultaneously in aqueous samples. The same analytes were used to evaluate a sandwich technique based on the introduction of a very large sample volume, sandwiched between two different reagents. A method based on differential kinetics was used to determine nickel and cobalt with the same reagent (PAR) without prior separation. Three sequential extraction systems were developed for the determination of two up to seven metal ions in the same samples.

Compared to flow injection extraction, the sequential injection extraction manifold is much simpler to design, since no phase segmenters or separators are needed. For all of these determinations, SIA manifolds with only a single detector were used. The usefulness, cost-effectiveness and advantages of multi-component sequential injection analysis over convential (multi-component) flow injection analysis are demonstrated. ii

Multi-komponent Bepalings met behulp van Sekwensiele inspuitanalise deur Rosa Elizabeth Taljaard Promotor: Professor Jacobus F. van Staden Departement Chemie Universiteit van Pretoria Graad: Philosophiae Doctor SAMEVATTING. Die behoefte om verskeie parameters in dieselfde monstervinnig en effektiefte bepaal, het die ontwikkeling van geoutomatiseerde analitiese metodes versnel. Hierdie behoefte het veral op die gebied van kliniese chemie, besoedelingsbeheer asook industriele kwaliteitsbeheer ontstaan. Veelvuldige bepalings is wenslik, nie aileen omdat dit goedkoper is nie, maar ook weens die feit dat die skeidingstap benodig om steurings weens soortgelyke spesies te verwyder, verkort of heeltemal weggelaat kan word. Die resultaat hiervan is dat minder monstervoorbereiding benodig word. Dit opsigself verminder die verlies aan analiet as gevolg van lang en soms oneffektiewe monstervoorbereidingsmetodes. Verskeie multi-komponent sekwensiele-:-inspuitanalise sisteme is voorgestel tydens hierdie studie, onder andere 'n nuwe tandem toepassing van SIA vir die agtereenvolgende of gelyktydige bepaling van yster en sulfaat in waterige monsters. Die bepaling is gebaseer op 'n geoptimiseerde volgorde van monsters en reagense in die deurvloeispiraal asook die kinetika van die betrokke reaksies. Dieselfde analiete is gebruik in die evaluering van 'n "toebroodjie-tegniek". Die tegniek is gebaseer op die iii

gebruik van In baie groot monstervolume wat gelee is tussen twee verskillende reagens oplossings. In Metode gebaseer op differensiele kinetika is aangewend vir die bepaling van nikkel en kobalt met dieselfde reagens (PAR), sonder die vooraf skeiding van die analiete. Drie sekwensiele-inspuitekstraksie sisteme is ontwikkel vir die bepaling van twee tot en met sewe metaalione in monsters. In vergelyking met vloei-inspuitekstrasie is die sisteemontwerp van die sekwensiele-inspuitekstraksie eenhede baie eenvoudig, aangesien geen fasesegmenteerders of -skeiers benodig word nie. AI die voorgestelde bepalings het van SIA sisteme met slegs een detektor gebruik gemaak. Die aanwending, ekonomiese en ander voordele van hierdie veelvuldige tegniek bo konvensionele vloei-inspuitanalise (VIA) is aangetoon. iv

Acknowledgements First and foremost, I would like to express my gratitude towards the Lord, my God, for the strength and perseverance He gave me to achieve this goal. There were many times that I was on the brink of letting all go, but He was (and is) always there for me to give me strength and courage. I like to thank my supervisor, Professor Koos van Staden, for his constant enthusiasm, patience and valuable aid during my studies. A special word of thanks to my husband, Pieter van Jaarsveldt, for all his patience, tolerance and special efforts, especially during the last few months. Pieter, thanks for all the extra tasks you had to perform in and around the house, for all the times you could not go out, because I had to work and for all the evenings you had to spend in front of the television alone. Without you I would definitely not made it thus far. I also like to thank my parents, Kobus and Marika Taljaard, and sisters, Johanel, Marlie and Jacolene, for their encouragement and motivation. You have, often unknowingly, provide that vital support when it appears that nothing is about to work. To my familyin-law, thanks for your patience and encouragement. A number of friends and colleagues have helped me in various ways, and I like to thank them all, while mentioning specifically only a few - Adele Botha and Hanneli du Plessis for their help in finding the correct components (debubblers) for my extraction systems, for always being willing listen to my problems and for their valuable advice. Neels Hattingh, Niel Malan and Marga Stronkhorst for their constant encouragement, tolerance, motivation and advice - even though some of them were not in South Africa the whole time, they still took the effort to phone to show their support. Dr Raluca Stefan, thanks for your help with proofreading some of my articles. I also like to thank my colleagues at Citicol and CAL (Central Agricultural Laboratories) for their understanding and motivation. v

I also want to express my gratitude towards the following persons and companies: Dr Andre Scheffer, Frans van Semmel, Ian Grace and Stefan Toerien from Chemetrix for all their time and effort and advice in getting the diode array spectrophotometer up and running and ready for coupling with FlowTEK. Dr Graham Marshall for his advice and assistance with the coupling of the diode array spectrophotometer with the FlowTEK program. The FRO and the University of Pretoria for financial support. vi

To Him who by means ofhis power working in us is able to do so much more than we can ever asks for, or even think of: to God be the glory. Ephesians 3 : 20-21. vii

Table of Contents Synopsis Samevatting iii Acknowledgements v Table of Contents viii 1 Multi-Component Sequential Injection - A New Challenge? 1 1.1 I ntrod u ction 1 1.2 Single-component sequential injection analysis 4 1.3 Multi-component sequential injection analysis 6 1.4 Aim of this study 8 1.5 References 11 2 Sequential Injection Analysis 14 2.1 Introduction 14 2.2 Historical background 15 2.3 Basic principles 19 2.4 Operational parameters 22 2.5 Single zone sequential injection analysis 28 2.6 Two zone sequential injection analysis 28 2.7 Three zone SIA systems 29 2.8 More than three zone systems 29 2.9 Multi-component techniques in SIA 29 viii

2.10 More complicated systems 30 2.10.1 Calibration 30 2.10.2 Dialysis 31 2.10.3 Titrations 33 2.10.4 Dilution 34 2.10.5 Extraction 36 2.10.6 Preconcentration and separation 37 2.10.7 Mixing chambers 37 2.11 Conclusions 39 2.12 References 40 3 Simultaneous Determinations 47 3.1 Introduction 47 3.2 Simultaneous determinations in FIA 48 3.2.1 Simultaneous determinations with several detectors 50 3.2.1.1 Detectors in series 50 3.2.1.2 Detectors in parallel 51 3.2.2 Simultaneous determinations with a single detector 52 3.2.2.1 Two flow cells 54 3.2.2.2 ph gradients 54 3.2.2.2.1 Establishment of ph gradients 55 3.2.2.3 Ion exchange 57 3.3 Commutation in flow injection analysis 57 3.4 'Methods based on differential kinetics 58 3.4.1 Systems with two detectors 59 3.4.2 Systems with multi-detection 59 3.4.3 Systems with a single detector 60 3.4.3.1 Single injection 60 3.4.3.1.1 Cornbination of convential FIA and stopped flow 60 ix

3.4.3.1.2 Splitting of the flow 60 3.4.3.2 Double injection 61 3.4.3.3 Adaption to SIA systems 62 3.5 Multi-component techniques in sequential injection analysis 63 3.6 Other techniques that can do simultaneous determinations 64 3.7 Concepts in simultaneous determinations 65 3.8 Conclusion 67 3.9 References 68 4 Extractions 70 4.1 Introduction 70 4.2 Extraction in convential FIA systems 71 4.3 Basic components of FIA extraction manifolds 74 4.3.1 Transport units 74 4.3.2 Segmenters 75 4.3.3 Extraction coils 75 4.3.4 Phase separators 78 4.4 Extraction procedures using SIA manifolds 79 4.5 Theory on liquid-liquid extractions 81 4.6 Extraction of metals 82 4.7 Dithizone as extractant 83 4.7.1 Disadvantages of Dithizone 84 4.8 Choice of solvent 85 4.9 Factors influencing film formation and thickness 91 4.10 Verification of extraction results 95 4.11 Conclusion 95 4.12 References 97 x

5 Analysis of Aqueous, Biological and Soil Samples 99 5.1 Introduction 99 5.2 Soil samples 100 5.2.1 Soil sampling 100 5.2.2 Sample pretreatment 101 5.2.3 Soil extraction (leaching) 102 5.3 Biological samples 105 5.3.1 Sampling and preservation of urine 105 5.3.2 Sample pretreatment 106 5.3.3 Extraction of samples 106 5.4 Aqueous solutions 107 5.4.1 Sampling of liquids 107 5.4.1.1 Liquids flowing in open systems 107 5.4.1.2 Liquids flowing within closed systems 108 5.4.1.3 Liquids stored in closed containers 108 5.4.1.4 Liquids in open bodies 109 5.4.2 Storing of samples 109 5.4.3 Pretreatment of samples 109 5.4.4 Separation techniques used for aqueous samples 110 5.5 Conclusion 111 5.6 Reference 112 6 Tandem Sequential Injection Analysis: Determination of Iron and Sulphate 113 6.1 Introduction 113 6.2 Biological and industrial importance of iron and sulphate 114 6.3 Choice of analytical method 116 6.4 Principle of the reactions chosen for the tandem SIA system 119 6.4.1 Principle of the turbidimetric determination 119 xi

6.4.1.1 Colloidal suspensions 119 6.4.2 Principle of the iron-tiron reaction 120 6.5 Determination of iron and sulphate with sequential injection analysis 121 6.5.1 Experimental 121 6.5.1.1 Reagents and solutions 121 6.5.1.2 Apparatus 122 6.5.1.3 Manifold 123 6.5.1.4 Procedure 123 6.5.2 Method optimisation 126 6.5.2.1 Order of reactions 126 6.5.2.2 Physical parameters 127 6.5.2.2.1 Flow rate 127 6.5.2.2.2 Holding coil 129 6.5.2.2.3 Reaction coil 130 6.5.2.3 Chemical parameters 131 6.5.2.3.1 Optimisation of the barium chloride reagent 131 6.5.2.3.2 Optimisation of the tiron reagent 133 6.5.2.3.3 Sequence of sample and reagents 133 6.5.2.3.4 Volume of barium chloride reagent solution 134 6.5.2.3.5 Volume of sample 1 135 6.5.2.3.6 Volume of sample 2 136 6.5.2.3.7 Volume of the tiron reagent solution 137 6.5.2.3.8 Sample and reagent volumes used in the sandwich technique 138 6.5.3 Method evaluation 140 6.5.3.1 Linearity 140 6.5.3.2 Accuracy 141 6.5.3.3 Precision 143 xii

6.5.3.4 Detection limits 144 6.5.3.5 Sample interaction 145 6.5.3.6 Sample frequency 146 6.5.3.7 Interferences 147 6.6 Conclusions 148 6.7 References 150 7 Simultaneous Kinetic Determination of Nickel(lI) and Cobalt(lI) using Sequential Injection Analysis 153 7.1 Introduction 153 7.2 Atomic and physical properties of the elements 154 7.3 Uses of Co and Ni 155 7.4 Biological importance of cobalt and nickel 156 7.5 Choice of analytical method 157 7.6 Principle of the kinetic determination of cobalt and nickel using PAR 159 7.7 The simultaneous kinetic determination of cobalt and nickel 160 7.7.1 Experimental 160 7.7.1.1 Reagents and solutions 160 7.7.1.2 Apparatus 161 7.7.1.3 Procedure 162 7.7.1.4 Sample preparation 165 7.8 Method optimisation 166 7.8.1 Physical parameters 166 7.8.1.1 Pump speed 167 7.8.1.2 Mixing chamber 168 7.8.1.3 Sample volume 169 7.8.1.4 Colour reagent and complex forming agent volume 169 7.8.1.5 Reagent concentration 171 xiii

7.8.1.6 EDTAvolume 172 7.8.2 Chemical parameters 173 7.8.2.1 ph 173 7.8.2.2 Zone sequencing 175 7.9 Kinetic data and reaction order 175 7.9.1 Reaction rates 175 7.9.2 Reaction rate laws 180 7.10 Evaluation of the SIA method 181 7.10.1 Linearity 181 7.10.2 Sample frequency 182 7.10.3 Sample interaction 182 7.10.4 Accuracy 183 7.10.5 Interferences 186 7.11 Conclusion 186 7.12 References 187 8 Simultaneous Determination of Mercury(lI) and Cobalt(lI) in Aqueous, Soil and Biological Solutions using a Simple Sequential Injection Extraction Method 189 8.1 Introduction 189 8.2 Uses of mercury and cobalt 190 8.3 Why is it important to determine these elements? 191 8.4 Choice of analytical method 192 8.4.1 Different analytical techniques available for individual analysis 192 8.4.2 Reactions with diphenylthiocarbazone 194 8.5 Simultaneous determination of mercury and cobalt using sequential injection extraction 195 8.5.1 Experimental 195 8.5.1.1 Reagents and solutions 195 xiv

8.5.1.2 Instrumentation 196 8.5.1.3 Procedure 197 8.5.1.4 Sample preparation 199 8.5.2 Method optimisation 199 8.5.2.1 Physical parameters 199 8.5.2.1.1 Introduction and removal of air bubbles 199 8.5.2.1.2 Flow rate 200 8.5.2.1.3 Sample volume 201 8.5.2.1.4 Extractant volume and extraction time 203 8.5.2.1.5 Organic film thickness 206 8.5.2.1.6 Diameter and length of tubing 206 8.5.2.2 Chemical parameters 207 8.5.2.2.1 ph 207 8.5.2.2.2 Choice of organic solvent 207 8.5.2.2.3 Concentration of Dithizone 209 8.5.3 Evaluation of the system 209 8.5.3.1 Linearity 210 8.5.3.2 Accuracy 210 8.5.3.3 Reproducibility 212 8.5.3.4 Sample frequency 213 8.5.3.5 Sample interaction 213 8.5.3.6 Detection limits 214 8.5.3.7 Interferences 214 8.6 Conclusion 215 8.7 References 216 9 Simultaneous Determination of Cadmium{lI) and Mercury{lI) in Aqueous, Urine and Soil Samples using ph-gradient Sequential Injection Extraction 219 9.1 Introduction 219 xv

9.2 Choice of analytical method 221 9.2.1 Methods of determination 221 9.2.2 Reactions with diphenylthiocarbazone 223 9.3 The simultaneous extraction of mercury(li) and cadmium(ll) with Dithizone 224 9.3.1 Experimental 224 9.3.1.1 Reagents and solutions 224 9.3.1.2 I nstru mentation 225 9.3.1.3 Procedure 226 9.3.1.4 Sample preparation 229 9.4 Method optimisation 230 9.4.1 Physical parameters 230 9.4.1.1 Zone sequence 230 9.4.1.2 Introduction of air bubbles 231 9.4.1.3 Removal of air bubbles 231 9.4.1.4 Flow rate 232 9.4.1.5 Sample volume 234 9.4.1.6 Extractant volume and extraction volume 235 9.4.1.7 Volumes of acidic and alkaline buffer solutions 236 9.4.1.8 Organic film thickness 237 9.4.1.9 Diameter and length of tubing 238 9.4.2 Chemical parameters 239 9.4.2.1 ph 239 9.4.2.2 Choice of organic solvent 240 9.4.2.3 r.oncentration of Dithizone 240 9.5 Evaluation of the system 241 9.5.1 Linearity 241 9.5.2 Accuracy 242 9.5.3 Reproducibility 244 9.5.4 Sample frequency 245 9.5.5 Sample interaction 245 xvi

9.5.6 Detection limits 246 9.5.7 Interferences 246 9.6 Conclusion 247 9.7 References 249 10 Determination of Lead(II), Copper(II), Zinc(II), Cobalt(II), Cadmium(II), Iron(lII) and Mercury(lI) using Sequential Injection Extraction 252 10.1 Introduction 252 10.2 Uses and biological importance of the different metals 254 10.3 Methods of determination 258 10.3.1 Conventional methods of detection 258 10.3.2 Reactions with diphenylthiocarbazone (Dithizone) 258 10.4 Simultaneous determination of Pb(II), Cu(II), Zn(II), Co(II), Cd(II), Fe(llI) and Hg(lI) with sequential injection extraction 260 10.4.1 Experimental 260 10.4.1.1 Reagents and solutions 260 10.4.1.2 Instrumentation 262 10.4.1.3 Procedure 263 10.4.1.4 Sample preparation 265 10.4.2 Optimisation 265 10.4.2.1 Physical parameters 265 10.4.2.1.1 Introduction and removal of air bubbles 266 10.4.2.1.2 Flow rate 267 10.4.2.1.3 Sample volume 268 10.4.2.1.4 Extractant volume and extraction time 269 10.4.2.1.5 Organic film thickness 270 10.4.2.1.6 Diameter and length of tubing 271 10.4.2.1.7 Waiting period and measuring intervals 272 xvii

10.4.2.2 Chemical parameters 10.4.2.2.1 ph 10.4.2.2.2 Choice of organic solvent 10.4.2.2.3 Concentration of Dithizone 10.4.2.2.4 Addition of acetone 10.4.3 Evaluation of the system 10.4.3.1 10.4.3.2 10.4.3.3 10.4.3.4 10.4.3.5 10.4.3.6 Linearity Accuracy and precision Sample frequency Sample interaction Detection limits Interferences 10.5 Conclusion 10.6 References 274 274 274 275 276 276 277 280 288 289 289 289 290 291 11 Summary 294 Addendum 1: Addendum 2: Method construction Simplified method References Publications and presentations 299 309 313 314 xviii