Charged Pion Polarizability & Muon g-2

Similar documents
Hadronic contributions to the muon g-2

Hadronic light-by-light from Dyson-Schwinger equations

OLD AND NEW RESULTS FOR HADRONIC-LIGHT-BY-LIGHT

HLbl from a Dyson Schwinger Approach

HADRONIC CONTRIBUTIONS TO THE MUON ANOMALOUS MAGNETIC MOMENT: overview and some new results for the hadronic Light-by-light part

Hadronic light-by-light scattering in the muon g 2

HADRONIC LIGHT-BY-LIGHT FOR THE MUON ANOMALOUS MAGNETIC MOMENT

HLbl from a Dyson Schwinger Approach

Andreas Nyffeler. Chiral Dynamics 2012, August 6-10, 2012 Jefferson Laboratory, Newport News, VA, USA

Isospin and Electromagnetism

The muon g-2 discrepancy: new physics or a relatively light Higgs?

Erice Hadronic contribution. muon g 2 from a Dyson-Schwinger perspective. Tobias Göcke yo

Leading-order hadronic contribution to the anomalous magnetic moment of the muon from N f = twisted mass fermions

Magnetic and Electric Dipole Moments

Hadronic Cross Section Measurements with ISR and the Implications on g µ 2

Theory overview on rare eta decays

Physics from 1-2 GeV

Hadronic and e e spectra, contribution to (g-2) and QCD studies

Hadronic light-by-light scattering in the muon g 2

Lattice calculation of hadronic light-by-light scattering contribu

Photon-fusion reactions in a dispersive effective field theory from the chiral Lagrangian with vector-meson fields

Open problems in g-2 and related topics.

The MSSM confronts the precision electroweak data and muon g 2. Daisuke Nomura

Comments on Recent Developments in Theory of Hadronic Light-by-Light

Recent Progress on. Tau Lepton Physics. ν τ. A. Pich IFIC, Valencia. Euroflavour 08, IPPP, Durham September 2008

The muon g-2 recent progress

Light hadrons at e+e- colliders

The chiral anomaly and the eta-prime in vacuum and at low temperatures

Effective field theory estimates of the hadronic contribution to g 2

Low-energy aspects of amplitude analysis: chiral perturbation theory and dispersion relations

N and (1232) masses and the γn transition. Marc Vanderhaeghen College of William & Mary / Jefferson Lab

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Recent results and perspectives on pseudo-scalar mesons and form factors at BES III

Hadronic Inputs to the (g-2)µ Puzzle

Light pseudoscalar masses and decay constants with a mixed action

η π 0 γγ decay in the three-flavor Nambu Jona-Lasinio model

Testing the Standard Model with the lepton g-2

Two-Loop Corrections to the Muon Magnetic Moment from Fermion/Sfermion Loops in the MSSM

CHIRAL SYMMETRY AT HIGH ENERGIES: HARD PION CHIRAL PERTURBATION THEORY

Charged Pion Contribution to the Anomalous Magnetic Moment of the Muon

Update on the hadronic light-by-light contribution to the muon g 2 and inclusion of dynamically charged sea quarks

Bethe Salpeter studies of mesons beyond rainbow-ladder

Octet Baryon Charge Radii, Chiral Symmetry and Decuplet Intermediate States. Abstract

EDMs at Dimension Six

Richard Williams. Hèlios Sanchis-Alepuz

QCD in the light quark (up & down) sector (QCD-light) has two mass scales M(GeV)

Light hadrons in 2+1 flavor lattice QCD

The Muon g 2 Challenging e+e and Tau Spectral Functions

Prog. Part. Nucl. Phys. 75 (2014) 41 τ Physics. Antonio Pich. IFIC, Univ. Valencia CSIC

The muon g-2: where we are?

Muon g 2. Physics 403 Advanced Modern Physics Laboratory Matthias Grosse Perdekamp. Slides adapted from Jörg Pretz RWTH Aachen/ FZ Jülich

QCD, Factorization, and the Soft-Collinear Effective Theory

MILC results and the convergence of the chiral expansion

HARD PION CHIRAL PERTURBATION THEORY

Chiral Dynamics with Pions, Nucleons, and Deltas. Daniel Phillips Ohio University

When Perturbation Theory Fails...

Hadronic light-by-light contribution to the muon g-2 from lattice QCD+QED

Hyeon-Dong Son Inha University In collaboration with Prof. H.-Ch. Kim

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

The Anomalous Magnetic Moment of the Muon in the Minimal Supersymmetric Standard Model for tan β =

Effective Field Theory and EDMs

A Dyson-Schwinger equation study of the baryon-photon interaction.

Review of ISR physics at BABAR

(g-2)μ SUSY and the LHC

National Nuclear Physics Summer School Lectures on Effective Field Theory. Brian Tiburzi. RIKEN BNL Research Center

Non-local 1/m b corrections to B X s γ

A scrutiny of hard pion chiral perturbation theory

Measuring the charged pion polarizability in the γγ π + π reac5on

Neutron Lifetime & CKM Unitarity: The Standard Model & Beyond

e + e results from BaBar, status of muon (g-2) prediction and τ mass measurement at BESIII

The Hadronic Contribution to (g 2) μ

Hadronic Light-by-Light Scattering and Muon g 2: Dispersive Approach

Partial compositeness on the lattice:

Introduction to perturbative QCD and factorization

The Phases of QCD. Thomas Schaefer. North Carolina State University

Nonperturbative QCD corrections to electroweak observables. Dru Renner Jefferson Lab (JLab)

Viability of strongly coupled scenarios with a light Higgs like boson

Electric Dipole Moments I. M.J. Ramsey-Musolf

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1

Effective Field Theory for Nuclear Physics! Akshay Vaghani! Mississippi State University!

Baryon Electric Dipole Moments from Strong CP Violation

(Lifetime and) Dipole Moments

Massimo Passera INFN Padova. Symposium on Muon Physics in the LHC Era INT - Seattle October 27-30, 2008

The chiral representation of the πn scattering amplitude and the pion-nucleon σ-term

Tau Physics: Status and Prospects. George Lafferty The University of Manchester

arxiv:hep-ph/ v2 22 Feb 1996

Muon g 2 Hadronic Vacuum Polarization from flavors of sea quarks using the HISQ action

Overview of low energy NN interaction and few nucleon systems

Measurement of e + e hadrons cross sections at BABAR, and implications for the muon g 2

Study of Transitions and Decays of Bottomonia at Belle

Dirac and Pauli form factors from N f = 2 Clover-fermion simulations

arxiv: v1 [hep-ph] 13 Nov 2013

Exploratory studies for the position-space approach to hadronic light-by-light scattering in the muon g 2

Baroion CHIRAL DYNAMICS

Effective Field Theory

LOW-ENERGY QCD and STRANGENESS in the NUCLEON

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

The η-meson Decay Program at WASA-at-COSY

QCD Symmetries in eta and etaprime mesic nuclei

Richard Williams C. S. Fischer, W. Heupel, H. Sanchis-Alepuz

Transcription:

Charged Pion Polarizability & Muon g-2 M.J. Ramsey-Musolf U Mass Amherst Amherst Center for Fundamental Interactions http://www.physics.umass.edu/acfi/ ACFI-J Lab Workshop! March 2014! 1

Outline I. Intro & Motivation: SM & Beyond II. Hadronic Light-by-Light: Review & Status III. Charged Pion Loops revisited IV. Summary and Outlook 2

Intro & Motivation: SM & Beyond 3

Muon Anomalous Magnetic Moment γ µ µ Z π QED Weak Had VP Had LbL Davier et al 11 ~ 3.5 σ! SM Loops ψ ϕ ϕ γ Smuon (SUSY) Leptoquark Dark photon Heavy Z Extended scalar sector µ 4

Theory Error Budget a µ (EW) = 154 (2) x 10-11 a µ (HVP-LO) = 7015 (47) x 10-11 a µ (HVP-NLO) = -98 (1) x 10-11 a µ (HLBL) = 116 (39) x 10-11 105 (26) x 10-11 δ a µ TH = + - 53 x 10-11 δ a µ EXP = + - 63 x 10-11 + - 15 x 10-11 BNL E821 FNAL New g-2 W. Marciano, arxiv: 1001.4528/hep-ph M. Davier et al, EPJ C 71 (2011) 1515 5

Theory Error Budget a µ (EW) = 154 (2) x 10-11 a µ (HVP-LO) = 7015 (47) x 10-11 a µ (HVP-NLO) = -98 (1) x 10-11 a µ (HLBL) = 116 (39) x 10-11 105 (26) x 10-11 δ a µ TH = + - 53 x 10-11 δ a µ EXP = + - 63 x 10-11 + - 15 x 10-11 BNL E821 FNAL New g-2 Δa µ = a µ EXP - a µ TH = 287 (83) x 10-11 W. Marciano, arxiv: 1001.4528/hep-ph M. Davier et al, EPJ C 71 (2011) 1515 6

Theory Error Budget a µ (EW) = 154 (2) x 10-11 a µ (HVP-LO) = 7015 (47) x 10-11 a µ (HVP-NLO) = -98 (1) x 10-11 a µ (HLBL) = 116 (39) x 10-11 105 (26) x 10-11 δ a µ TH = + - 53 x 10-11 δ a µ EXP = + - 63 x 10-11 + - 16 x 10-11 BNL E821 FNAL New g-2 Δa µ = a µ EXP - a µ TH = 287 (83) x 10-11 W. Marciano, arxiv: 1001.4528/hep-ph M. Davier et al, EPJ C 71 (2011) 1515 7

Theory Error Budget a µ (EW) = 154 (2) x 10-11 a µ (HVP-LO) = 7015 (47) x 10-11 a µ (HVP-NLO) = -98 (1) x 10-11 a µ (HLBL) = 116 (39) x 10-11 105 (26) x 10-11 Most challenging δ a µ TH = + - 53 x 10-11 δ a µ EXP = + - 63 x 10-11 + - 16 x 10-11 BNL E821 FNAL New g-2 Δa µ = a µ EXP - a µ TH = 287 (83) x 10-11 W. Marciano, arxiv: 1001.4528/hep-ph M. Davier et al, EPJ C 71 (2011) 1515 8

Hadronic Light-by-Light: Review & Status 9

HLBL Contributions Pseudoscalar Loops π +, K + π 0, η... Pseudoscalar Poles Quark Loops Hayakawa, Kinoshita, Sanda 95 10

Pseudoscalar Pole Contribution O (N C ) 11

Pseudoscalar Pole Contribution O (N C ) L WZW : ln 2 term! Sign error discovered by Knecht et al P! l + l - : ln term! Exp t (MRM, Wise) Overall LEC! Models, lattice QCD 12

Pseudoscalar Pole Contribution O (N C ) L WZW : ln 2 term! Sign error discovered by Knecht et al P! l + l - : ln term! Exp t (MRM, Wise) Overall LEC! Models, lattice QCD a µ (χpt) = (57 +50-60 + 31 C ) x 10-11 13

Pseudoscalar Pole Contribution O (N C ) L WZW : ln 2 term! Sign error discovered by Knecht et al P! l + l - : ln term! Exp t (MRM, Wise) Overall LEC! Models, lattice QCD Significantly reduced: KTeV 07 a µ (χpt) = (57 +50-60 + 31 C ) x 10-11 14

Pseudoscalar Pole Contribution O (N C ) L WZW : ln 2 term! Sign error discovered by Knecht et al P! l + l - : ln term! Exp t (MRM, Wise) Overall LEC! Models, lattice QCD a µ (χpt) = (57 +50-60 + 31 C ) x 10-11 Models: C ~ 2 E821: C ~ 10 ~ 1σ 15

Representative Models Hidden Local Symmetry (HLS) [1] Extended NJL (ENJL)/VMD[1,2] Constituent Chiral Quark Model (CχQM) [3] AdS/CFT [4] Dyson-Schwinger [5] [1] Hayakawa, Kinoshita, Sanda 95 [2] Bijnens, Pallante, Prades 96 [3] De Rafael 12; Boughezal & Melkinov 11 [4] Hong & Kim 09; Cappiello, Cata, D Ambrosio 11 [5] Goeke, Fischer, Williams 11, 12 16

Representative Models Hidden Local Symmetry (HLS) [1] Extended NJL (ENJL)/VMD[1,2] Constituent Chiral Quark Model (CχQM) [3] AdS/CFT [4] Dyson-Schwinger [5] [1] Hayakawa, Kinoshita, Sanda 95 [2] Bijnens, Pallante, Prades 96 [3] De Rafael 12; Boughezal & Melkinov 11 [4] Hong & Kim 09; Cappiello, Cata, D Ambrosio 11 [5] Goeke, Fischer, Williams 11, 12 ρ pole 17

Short Distance Constraints Vainshtein & Melnikov 04 O (N C ) L WZW : ln 2 term! Sign error discovered by Knecht et al P! l + l - : ln term! Exp t (MRM, Wise) Overall LEC! Models, lattice QCD Δ a µ (OPE) = 30 x 10-11 (! C = +1 ) 18

Charged Pion Loops Revisited 19

Charged Pion Contribution Kinoshita, Nizic, Okamoto 85 ; Hayakawa, Kinoshita, Sanda 95 O (N C0 ) Point-like pions: -0.0383 (19) (α /π) 3 = -48 (2) x 10-11 Include F π (q 2 ): -0.0125 (19) (α /π) 3 = -16 (2) x 10-11 HLS : -0.00355 (12) (α /π) 3 = -4.5 (0.2) x 10-11 ENJL: -0.015 (4) (α /π) 3 = -19 (5) x 10-11 20

Charged Pion Contribution Kinoshita, Nizic, Okamoto 85 ; Hayakawa, Kinoshita, Sanda 95 O (N C0 ) Substantial NLO impact Point-like pions: -0.0383 (19) (α /π) 3 = -48 (2) x 10-11 Include F π (q 2 ): -0.0125 (19) (α /π) 3 = -16 (2) x 10-11 HLS : -0.00355 (12) (α /π) 3 = -4.5 (0.2) x 10-11 ENJL: -0.015 (4) (α /π) 3 = -19 (5) x 10-11 21

Charged Pion Contribution: χpt Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM Chiral Perturbation Theory Pion: Goldstone boson of spont broken chiral symmetry SU(2) L x SU(2) R! SU(2) V Expand in p / Λ χ Λ χ ~ 1 GeV 22

Charged Pion Contribution: χpt Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM Beyond leading order: subgraphs Pion charge radius: first non-trivial term in expansion of F π (q 2 ) O (p 4 ) LEC: α 9 Pion polarizability: distinct physics from ff O (p 4 ) LEC: α 9 + α 10 + 23

Charged Pion Contribution: χpt Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM Beyond leading order: embedding subgraphs in full HLBL contribution d=8 ops PRD 86:037502 (2012) d=10 ops 24

Charged Pion Contribution: χpt Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM Beyond leading order: embedding subgraphs in full HLBL contribution PRD 86:037502 (2012) LO: suppressed 25

Charged Pion Contribution: χpt Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM Beyond leading order: embedding subgraphs in full HLBL contribution PRD 86:037502 (2012) Pol bility Charge radius 26

Charged Pion Contribution: χpt Kevin Engel (Caltech), Hiren Patel (Wisconsin), MRM Beyond leading order: embedding subgraphs in full HLBL contribution Currently Omitted Pol bility PRD 86:037502 (2012) Charge radius 27

Charged Pion Contribution: χpt Kevin Engel (Caltech), MRM Beyond leading order: embedding subgraphs in full HLBL contribution + 28

Charged Pion Contribution: χpt Kevin Engel (Caltech), MRM Beyond leading order: embedding subgraphs in full HLBL contribution Charge radius Pol bility + 29

Charged Pion Contribution: χpt Kevin Engel (Caltech), MRM Beyond leading order: embedding subgraphs in full HLBL contribution Charge radius Pol bility Pure EFT: Divergent! Modeling + required 30

Charged Pion Contribution: χpt Kevin Engel (Caltech), MRM Beyond leading order: embedding subgraphs in full HLBL contribution Charge radius Pol bility + Bijnens & Abyaneh 1208.3548 : Include α 9 +α 10 to k loop ~ 500 MeV! 10% increase in a µ (π loop) 31

Beyond χpt: Modeling High Q 2 Analgous problem: Pseudoscalar EM mass splitting Donoghue, Holstein, Wyler 93 32

Beyond χpt: Modeling High Q 2 Analgous problem: Pseudoscalar EM mass splitting Donoghue, Holstein, Wyler 93 Pure EFT: Divergent! Modeling required 33

Beyond χpt: Modeling High Q 2 Analgous problem: Pseudoscalar EM mass splitting Donoghue, Holstein, Wyler 93 Quark counting rules 34

Beyond χpt: Modeling High Q 2 Analgous problem: Pseudoscalar EM mass splitting Donoghue, Holstein, Wyler 93 Quark counting rules ρ a 1 35

Beyond χpt: Modeling High Q 2 Analgous problem: Pseudoscalar EM mass splitting Donoghue, Holstein, Wyler 93 Finite Δ m π 2 requires additional form factors Quark counting rules See Donoghue & Perez 96 ρ a 1 36

Beyond χpt: Modeling High Q 2 Analgous problem: Pseudoscalar EM mass splitting Donoghue, Holstein, Wyler 93 Model: Expt: Δ m π 2 = 2 m π x 5.6 MeV Δ m π 2 = 2 m π x 4.6 MeV Quark counting rules ρ a 1 37

Charged Pion Contribution: Model Kevin Engel (Caltech), MRM arxiv: 1309.2225 Interpolating from chiral to high momentum regime: Match onto O (p 4 ) χpt results in low p regime Reproduce 1/q 2 asymptotic behavior for T µν Incorporate resonance saturation physics Produce finite a µ Reproduce EM Δm 2 π if possible Note: Δm π 2 receives contribution from 38

Charged Pion Contribution: Model Kevin Engel (Caltech), MRM + ρ pole 39

Charged Pion Contribution: Model Kevin Engel (Caltech), MRM arxiv: 1309.2225 Two Models: Finite Δ m π 2 for M A 2 = 2 M V 2 4 M A 2 (α 9 + α 10 ) = F A 2 40

Pion Polarizability Experiment Rad π decay + r π 2 41

Pion Polarizability Experiment J Lab future γa! π + π - A Rad π decay + r π 2 42

Charged Pion Contribution: Results Kevin Engel (Caltech), MRM arxiv: 1309.2225 (α 9 + α 10 ): Rad π decay γ p! γ π + n Recall: 43

Charged Pion Contribution: Results Kevin Engel (Caltech), MRM arxiv: 1309.2225 (α 9 + α 10 ): Rad π decay γ p! γ π + n ~ 30 x 10-11 spread from (α 9 + α 10 ) ~ 30 x 10-11 spread from interpolation (modeling) 44

Summary & Outlook Charged pion polarizability previously omitted from SM prediction for muon g-2 Inclusion tends to increase discrepancy between experimental value and SM prediction Parametric and modeling uncertainties are significant compared to expected precision of FNAL measurement J Lab polarizability measurement would eliminate parameteric uncertainty Future challenge: experimental test of interpolation with γ * momentum 45

Back Up Slides 46

Muon Anomalous Magnetic Moment γ µ µ Z π QED Weak Had VP Had LbL Davier et al 11 ~ 3.4 σ! SM Loops 47

Muon Anomalous Magnetic Moment γ µ µ Z π QED Weak Had VP Had LbL Davier et al 11 ~ 3.4 σ! SM Loops SUSY Loops 48

Muon Anomalous Magnetic Moment γ µ µ Z π QED Weak Had VP Had LbL Davier et al 11 ~ 3.4 σ! SM Loops SUSY Loops 49

Muon Anomalous Magnetic Moment γ µ µ Z π Future goal QED Weak Had VP Had LbL Davier et al 11 ~ 3.4 σ! SM Loops SUSY Loops 50

Muon Anomalous Magnetic Moment γ µ µ Z π Future goal QED Weak Had VP Had LbL Davier et al 11 ~ 3.4 σ! SM Loops SUSY Loops 51

Nyffeler 1001.3970 HLBL: Compilation 52

Nyffeler 1001.3970 HLBL: Compilation 53

Nyffeler 1001.3970 HLBL: Compilation HLS 54

Lattice QCD See A. Juttner (B1) Blum, Izubuchi, : QED + QCD Rakow (QCDSF): 4pt function 55

Aoyama, Hayakawa, Kinoshita, Nio 12 Tenth Order QED 56