Across and Beyond the Cell Are Peptide Strings

Similar documents
BIOLOGY 111. CHAPTER 1: An Introduction to the Science of Life

Host-Pathogen Interaction. PN Sharma Department of Plant Pathology CSK HPKV, Palampur

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

Chapter Chemical Uniqueness 1/23/2009. The Uses of Principles. Zoology: the Study of Animal Life. Fig. 1.1

Computational Systems Biology

REQUIREMENTS FOR THE BIOCHEMISTRY MAJOR

Enduring understanding 1.A: Change in the genetic makeup of a population over time is evolution.

16 CONTROL OF GENE EXPRESSION

LESSON 2.2 WORKBOOK. How is a cell born? Workbook Lesson 2.2

An introduction to SYSTEMS BIOLOGY

Big Idea 1: The process of evolution drives the diversity and unity of life.

AP Curriculum Framework with Learning Objectives

Regulation and signaling. Overview. Control of gene expression. Cells need to regulate the amounts of different proteins they express, depending on

Gene Control Mechanisms at Transcription and Translation Levels

A A A A B B1

Lesson Overview. Gene Regulation and Expression. Lesson Overview Gene Regulation and Expression

SCOTCAT Credits: 20 SCQF Level 7 Semester 1 Academic year: 2018/ am, Practical classes one per week pm Mon, Tue, or Wed

Identification of Odors by the Spatiotemporal Dynamics of the Olfactory Bulb. Outline

Honors Biology Reading Guide Chapter 11

Computational Biology Course Descriptions 12-14

Gene Regulation and Expression

Computational Biology: Basics & Interesting Problems

The Characteristics of Life. AP Biology Notes: #1

Essential knowledge 1.A.2: Natural selection

SPA for quantitative analysis: Lecture 6 Modelling Biological Processes

September 16, 2004 The NEURON Book: Chapter 2

Case study: spider mimicry

ADVANCED PLACEMENT BIOLOGY

Biological networks CS449 BIOINFORMATICS

Introduction to Bioinformatics

Map of AP-Aligned Bio-Rad Kits with Learning Objectives

Complex Organisation and Fundamental Physics

Ch 4: Cellular Metabolism, Part 1

Max Planck, Nobel Prize in Physics and inventor of Quantum Mechanics said:

5.1 Cell Division and the Cell Cycle

Valley Central School District 944 State Route 17K Montgomery, NY Telephone Number: (845) ext Fax Number: (845)

Translation Part 2 of Protein Synthesis

Programmed Cell Death

The ubiquitin-proteasome-system

Genetics, brain development, and behavior

STAAR Biology Assessment

Compare and contrast the cellular structures and degrees of complexity of prokaryotic and eukaryotic organisms.

Understanding Science Through the Lens of Computation. Richard M. Karp Nov. 3, 2007

Molecular and cellular biology is about studying cell structure and function

Chapter 15 Active Reading Guide Regulation of Gene Expression

Dublin City Schools Science Graded Course of Study Physical Science

Introduction Biology before Systems Biology: Reductionism Reduce the study from the whole organism to inner most details like protein or the DNA.

Why This Class? James K. Peterson. August 22, Department of Biological Sciences and Department of Mathematical Sciences Clemson University

All living things are made of cells

AP Biology Essential Knowledge Cards BIG IDEA 1

Outline. Introduction, program and reference textbooks A few definition and facts Modeling of biological systems:

SPRINGFIELD TECHNICAL COMMUNITY COLLEGE ACADEMIC AFFAIRS

What is Systems Biology

I. Specialization. II. Autonomous signals

BME 5742 Biosystems Modeling and Control

13.4 Gene Regulation and Expression

AP Biology Curriculum Framework

Answer Key. Cell Growth and Division

Page 1 of 13. Version 1 - published August 2016 View Creative Commons Attribution 3.0 Unported License at

Plant Molecular and Cellular Biology Lecture 8: Mechanisms of Cell Cycle Control and DNA Synthesis Gary Peter

Biology Slide 1 of 31

Cell Division and Reproduction

Introduction to Bioinformatics

A.P. Biology Lecture Notes Unit 1A - Themes of Life

10/17/2012. Lecture Two. Cosmic Forces FROM ATOMS GALAXIES

CHAPTER 13 PROKARYOTE GENES: E. COLI LAC OPERON

Chem Lecture 10 Signal Transduction

Introduction. Gene expression is the combined process of :

Curriculum Map. Biology, Quarter 1 Big Ideas: From Molecules to Organisms: Structures and Processes (BIO1.LS1)

Guide to the Science Area For History and Science Concentrators Science and Society Track

Biology Assessment. Eligible Texas Essential Knowledge and Skills

Modularization of Signal Transduction Pathways: detecting the trend of development among various species

School of Biology. Biology (BL) modules. Biology & 2000 Level /8 - August BL1101 Biology 1

EEG- Signal Processing

Models of transcriptional regulation

Prentice Hall. Physics: Principles with Applications, Updated 6th Edition (Giancoli) High School

Introduction Principles of Signaling and Organization p. 3 Signaling in Simple Neuronal Circuits p. 4 Organization of the Retina p.

Kantian metaphysics to mind-brain. The approach follows Bacon s investigative method

Mathematical Biology - Lecture 1 - general formulation

Biology New Jersey 1. NATURE OF LIFE 2. THE CHEMISTRY OF LIFE. Tutorial Outline

Conclusions. The experimental studies presented in this thesis provide the first molecular insights

Activation of a receptor. Assembly of the complex

Introduction to Cells

BMD645. Integration of Omics

CELL AND MOLECULAR BIOLOGY OF THE TESTIS

The EGF Signaling Pathway! Introduction! Introduction! Chem Lecture 10 Signal Transduction & Sensory Systems Part 3. EGF promotes cell growth

Overview of ion channel proteins. What do ion channels do? Three important points:

Types of biological networks. I. Intra-cellurar networks

On the Plausible Implications of Gariaev & Montagnier s Work: Omne Vivum ex Vivo via Crebritudo?

Lecture 18 June 2 nd, Gene Expression Regulation Mutations

The performance expectation above was developed using the following elements from A Framework for K-12 Science Education:

Analysis and Simulation of Biological Systems

Teacher s Guide For. Core Astronomy

CORE CONCEPTS & TERMINOLOGY FALL 2010

UNIT 5. Protein Synthesis 11/22/16

SECRET OF THE TIME. R. A. Yusupov. Free researcher and dialectical materialist. Laboratory of the dialectical materialism, physics and cosmology,

Biology II : Embedded Inquiry

The Awareness Theory of Everything

Complex Systems Theory

and just what is science? how about this biology stuff?

Transcription:

Across and Beyond the Cell Are Peptide Strings Razvan Tudor Radulescu Molecular Concepts Research (MCR), Munich, Germany E-mail: ratura@gmx.net Mottos: "No great discovery was ever made without a bold guess." (Isaac Newton) "We may ask what the next step in the search for an understanding of the nature of life will be. I think that it will be the elucidation of the nature of the electromagnetic phenomena involved in mental activity in relation to the molecular structure of brain tissue." (Linus Pauling) Keywords: biology, physics, string theory, peptide strings, particle biology, physiology, pathology, cell, insulin, oncogenesis, cancer, metastasis, anti-oncogenesis, tumor suppressor, retinoblastoma protein (RB), neuron, brain, consciousness - 1 -

ABSTRACT Until presently, most approaches for understanding physiological or pathological phenomena have been based on the assumption that these processes start from individual cells, a concept introduced primarily by Virchow in the 19th century. Yet, it has also been increasingly recognized that this perception is insufficient, at least when it comes to grasping the mechanisms underlying largely incurable diseases such as metastatic cancer or rheumatoid arthritis. Despite this insight, even recently founded disciplines such as systems biology are still locked in this century-old mindset of cellular building blocks and thus predictably of limited usefulness. Other studies conducted over the past years, however, suggest that there is something more fundamental to life and its various conditions than the cell: peptide strings. Here, I review the origin and nature of these sub- and trans-cellular elements as well as their potential to provide the long-sought answers hitherto inaccessible to cell biology. - 2 -

A conceptual revolution has recently been launched. It incorporates the century-old view of cells as the basis of life into an even more fundamental perception: peptide strings (1,2). Peptide strings are an "emergent property" of biologically relevant proteins and peptides, as much as water is an "emergent property" whenever single H2O molecules come together (this latter definition was advanced by John P. Searle in his book entitled "The Mystery of Consciousness"). Although still invisible due to recording tools yet to be developed, peptide strings are as tangible as viruses used to be in the beginnings of virology or electromagnetic fields at the outset of modern experimental physics despite either initial invisibility. To grasp peptide strings one has to leave the snapshots of three-dimensional protein structures pioneered by Pauling (Fig. 1A) and move on towards a fourdimensional representation of protein dynamics in spacetime (Fig. 1B). The results of this theoretical advance echo the introduction of differential and integral calculus into mathematics by Leibniz and Newton since what peptide strings represent in spacetime is a surface or even a barrel-like body rather than a point, hence corresponding to the quantum-mechanical concept of an "electron cloud", yet, moreover, with direct implications for the understanding of a priori any given function in biology. y z t n A. x t B. Fig. 1 A. The three dimensions (x,y,z) of a given protein at a single time point t n; B. Barrel-shaped totality of movements and interactions of a given protein in spacetime, i.e. in a distinct three-dimensional space and a certain time interval t. - 3 -

Previously, a major example was given for a growth-regulatory framework with its two facets of an oncogenic and anti-oncogenic peptide string (2). Specifically, it was outlined how a growth-promoting signal such as that involving the LXCXE retinoblastoma protein (RB)-binding motif- or yet a sequence highly related theretopropagates from (thrombin and/or insulin floating in) the extracellular space to (RB residing in) the cell nucleus as well as further on to other cells, irrespective of their inner and outer borders, by a resonance-like process whereby distinct proteins sharing a similar peptide signature, e.g. the cytoplasmic pyruvate isoenzyme M2, sequentially pass on this information (2). Likewise, a pathway was traced for the opposite growth-inhibitory signal maintained by the peptide binding site for the LXCXE motif (2). This anticipated physiological process entails, among several protein-protein interactions, relatively few dimerizations between insulin and RB in a certain spacetime (Fig. 2A) whereas, during neoplastic transformation, insulin-rb dimers, or more generally speaking, LXCXE motif-driven oncogenic peptide strings likely predominate in spacetime (Fig. 2B). In view of the widespread dominance of matter over anti-matter, normal growth regulation is presumably also governed by asymmetry whereby growth-inhibitory peptide strings predominate, otherwise cancer (driven by growth-promoting peptide strings) would be more common. A. Ins.xRB Ins.xRB growth-inhibitory (± pro-apoptotic in cancer cells; ± anti-apoptotic in neurons) RB string B. Ins.xRB Ins.xRB growth-promoting (± anti-apoptotic in cancer cells; ± pro-apoptotic in neurons) RB string Fig. 2 A. growth-inhibitory peptide string for retinoblastoma protein (RB) corresponds to relatively few physical interactions between insulin and RB (Ins.xRB) in a certain spacetime; B. growth-promoting peptide string for RB corresponds to more insulin-bound (Ins.xRB) than free- or yet E2F-bound- RB molecules in a certain spacetime. - 4 -

Such novel graphical representations over spacetime could provide, especially should they be amenable to quantitation and automation in the future, a simple and efficient means to ascertain the state of a cell or tissue even before any epigenetic, genetic and/or morphological modifications have occurred. At a more fundamental level, peptide strings point to the existence of a hitherto unknown principle in biology (1,2). This involves the interplay between an initial biological stimulus and dual (allosteric) proteins whose structures are complementary in one part and similar or identical to each other in a different segment whereby these proteins are able to interact with the stimulus as well as with one another based on their complementariness- i.e. the (quantum-mechanical) property Pauling and Delbrück identified as the one determining macromolecular interactions (3)- to undergo a conformational change subsequent to such interaction and to finally spread in spacetime the information encoded in the stimulus through protein regions similar or identical thereto as well as to one another (2). In other words, the new insight provided by peptide strings implies that it is through complementariness in three-dimensional space that similarity or identity of a given protein-based biological information may be recruited and then propagated in spacetime in a chain reaction- or domino effect-like manner (2). Intriguingly, the coupling of spatial complementariness to spatiotemporal preservation of information characterizing peptide strings is also the essence of DNA replication. Within the framework of peptide strings, substantial progress beyond the understanding of cell growth regulation is also conceivable, for instance towards a new description of pain transmission and its possible modulation. Along this road of grasping ever more cellular phenomena through peptide strings, our focus would gradually shift from genetics and epigenetics to protein dynamics as being the driving force in biology and thus provide the roadmap for the recently sought "simplicity in biology" (4) "at the nexus between biology and physics" (5). Consequently, our views on life at the nanoscale could be profoundly revised, giving shape to a new basic science on radio or electromagnetic wave-like signal propagations in living matter. Considering that peptide strings comprise a general attractive force (2), hence expanding on particle biology (6)- within which (bio)gravitation (6,7) and field-like processes (6,8) are key features- the remaining enigmas of physical string theory (9) are also likely to be solved as a result. - 5 -

Perhaps most importantly, however, the peptide strings-propagated informational similarity or identity touched upon here may be the cornerstone underlying synchronized electrical activity and rhythmic oscillations of neurons across extended brain areas, for instance within the thalamocortical network (10), and thus ultimately guiding the emergence of consciousness. References 1. Radulescu, R.T. 2005. From particle biology to protein and peptide strings: a new perception of life at the nanoscale. Logical Biol. 5: 98-100. 2. Radulescu, R.T. 2006. Peptide strings in detail: first paradigm for the theory of everything (TOE). Pioneer 1: 62-68. 3. Pauling, L., and M. Delbrück. 1940. The nature of the intermolecular forces operative in biological processes. Science 92: 77-79. 4. Alon, U. 2007. Simplicity in biology. Nature 446: 497. 5. Coleman, P. 2007. Frontier at your fingertips. Nature 446: 379. 6. Radulescu, R.T. 2003. Particle biology: at the interface between physics and metabolism. Logical Biol. 3: 18-34. 7. Radulescu, R.T. 2005. On mass, motion, speed, force and energy in molecular biology: implications for cancer. Logical Biol. 5: 95-97. 8. Radulescu, R.T. 2005. Invisible field beyond visible cells: it is time to jump over a "Berlin wall" in cancer research. Logical Biol. 5: 13-16. 9. Witten, E. 2005. Unravelling string theory. Nature 438: 1085. 10. Steriade, M., and R.R. Llinas. 1988. The functional states of the thalamus and the associated neuronal interplay. Physiol. Rev. 68: 649-742. - 6 -