LECTURE 12. Special Solutions of Laplace's Equation. 1. Separation of Variables with Respect to Cartesian Coordinates. Suppose.

Similar documents
MATH 417 Homework 3 Instructor: D. Cabrera Due June 30. sin θ v x = v r cos θ v θ r. (b) Then use the Cauchy-Riemann equations in polar coordinates

8 Separation of Variables in Other Coordinate Systems

Polar Coordinates. a) (2; 30 ) b) (5; 120 ) c) (6; 270 ) d) (9; 330 ) e) (4; 45 )

15 Solving the Laplace equation by Fourier method

f(k) e p 2 (k) e iax 2 (k a) r 2 e a x a a 2 + k 2 e a2 x 1 2 H(x) ik p (k) 4 r 3 cos Y 2 = 4

-Δ u = λ u. u(x,y) = u 1. (x) u 2. (y) u(r,θ) = R(r) Θ(θ) Δu = 2 u + 2 u. r = x 2 + y 2. tan(θ) = y/x. r cos(θ) = cos(θ) r.

THE LAPLACE EQUATION. The Laplace (or potential) equation is the equation. u = 0. = 2 x 2. x y 2 in R 2

Class #16 Monday, March 20, 2017

An Exact Solution of Navier Stokes Equation

Lecture 7: Angular Momentum, Hydrogen Atom

PHYS 301 HOMEWORK #10 (Optional HW)

( ) [ ] [ ] [ ] δf φ = F φ+δφ F. xdx.

Tutorial Exercises: Central Forces

Exceptional regular singular points of second-order ODEs. 1. Solving second-order ODEs

DonnishJournals

I. CONSTRUCTION OF THE GREEN S FUNCTION

APPENDIX E., where the boundary values on the sector are given by = 0. n=1. a 00 n + 1 r a0 n, n2

Homework # 3 Solution Key

=0, (x, y) Ω (10.1) Depending on the nature of these boundary conditions, forced, natural or mixed type, the elliptic problems are classified as

EM Boundary Value Problems

Boundary Layers and Singular Perturbation Lectures 16 and 17 Boundary Layers and Singular Perturbation. x% 0 Ω0æ + Kx% 1 Ω0æ + ` : 0. (9.

Quantum theory of angular momentum

FOURIER-BESSEL SERIES AND BOUNDARY VALUE PROBLEMS IN CYLINDRICAL COORDINATES

r cos, and y r sin with the origin of coordinate system located at

Do not turn over until you are told to do so by the Invigilator.

On the integration of the equations of hydrodynamics

Math Section 4.2 Radians, Arc Length, and Area of a Sector

of the contestants play as Falco, and 1 6

Applied Aerodynamics

Math 2263 Solutions for Spring 2003 Final Exam

Compactly Supported Radial Basis Functions

1 Similarity Analysis

24. Balkanska matematiqka olimpijada

THE CONE THEOREM JOEL A. TROPP. Abstract. We prove a fixed point theorem for functions which are positive with respect to a cone in a Banach space.

Question Bank. Section A. is skew-hermitian matrix. is diagonalizable. (, ) , Evaluate (, ) 12 about = 1 and = Find, if

POISSON S EQUATION 2 V 0

Dymore User s Manual Two- and three dimensional dynamic inflow models

Geometry of the homogeneous and isotropic spaces

KEPLER S LAWS OF PLANETARY MOTION

Quantum Mechanics I - Session 5

1 Spherical multipole moments

As is natural, our Aerospace Structures will be described in a Euclidean three-dimensional space R 3.

Lecture 23. Representation of the Dirac delta function in other coordinate systems

Chapter 12: Kinematics of a Particle 12.8 CURVILINEAR MOTION: CYLINDRICAL COMPONENTS. u of the polar coordinate system are also shown in

2 Governing Equations

Radian Measure CHAPTER 5 MODELLING PERIODIC FUNCTIONS

REVIEW Polar Coordinates and Equations

Numerical Integration

Related Rates - the Basics

Chapter 3 Optical Systems with Annular Pupils

x x2 2 B A ) v(0, t) = 0 and v(l, t) = 0. L 2. This is a familiar heat equation initial/boundary-value problem and has solution

Appendix A. Appendices. A.1 ɛ ijk and cross products. Vector Operations: δ ij and ɛ ijk

Phys 201A. Homework 5 Solutions

On a quantity that is analogous to potential and a theorem that relates to it

INTRODUCTION. 2. Vectors in Physics 1

Suggested Solutions to Homework #4 Econ 511b (Part I), Spring 2004

Chapter 1: Introduction to Polar Coordinates

17.2 Nonhomogeneous Linear Equations. 27 September 2007

f h = u, h g = v, we have u + v = f g. So, we wish

In the previous section we considered problems where the

18.06 Problem Set 4 Solution

e.g: If A = i 2 j + k then find A. A = Ax 2 + Ay 2 + Az 2 = ( 2) = 6

SMT 2013 Team Test Solutions February 2, 2013

radians). Figure 2.1 Figure 2.2 (a) quadrant I angle (b) quadrant II angle is in standard position Terminal side Terminal side Terminal side

Review Exercise Set 16

Chapter 3: Theory of Modular Arithmetic 38

Cartesian Coordinate System and Vectors

MAC Module 12 Eigenvalues and Eigenvectors

Permutations and Combinations

Graphs of Sine and Cosine Functions

KOEBE DOMAINS FOR THE CLASSES OF FUNCTIONS WITH RANGES INCLUDED IN GIVEN SETS

Question 1: The dipole

Chapter 2: Introduction to Implicit Equations

The Archimedean Circles of Schoch and Woo

ENGI 4430 Non-Cartesian Coordinates Page xi Fy j Fzk from Cartesian coordinates z to another orthonormal coordinate system u, v, ˆ i ˆ ˆi

Math 209 Assignment 9 Solutions

Physics 111 Lecture 5 (Walker: 3.3-6) Vectors & Vector Math Motion Vectors Sept. 11, 2009

Section 8.2 Polar Coordinates

2. Electrostatics. Dr. Rakhesh Singh Kshetrimayum 8/11/ Electromagnetic Field Theory by R. S. Kshetrimayum

FREE TRANSVERSE VIBRATIONS OF NON-UNIFORM BEAMS

Physics 221 Lecture 41 Nonlinear Absorption and Refraction

B da = 0. Q E da = ε. E da = E dv

4. Some Applications of first order linear differential

Math 124B February 02, 2012

Using Laplace Transform to Evaluate Improper Integrals Chii-Huei Yu

PHYS 705: Classical Mechanics. Small Oscillations

Physics 2A Chapter 10 - Moment of Inertia Fall 2018

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

d 2 x 0a d d =0. Relative to an arbitrary (accelerating frame) specified by x a = x a (x 0b ), the latter becomes: d 2 x a d 2 + a dx b dx c

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II September 15, 2012 Prof. Alan Guth PROBLEM SET 2

(n 1)n(n + 1)(n + 2) + 1 = (n 1)(n + 2)n(n + 1) + 1 = ( (n 2 + n 1) 1 )( (n 2 + n 1) + 1 ) + 1 = (n 2 + n 1) 2.

Thus D ëc y + c y ë 6= c D ëy ë+c D ëy ë. Note that expressions èè and èè are not equal because sinèc y + c y è 6= c sin y + c sin y. sin is a nonline

MAE 210B. Homework Solution #6 Winter Quarter, U 2 =r U=r 2 << 1; ) r << U : (1) The boundary conditions written in polar coordinates,

So, if we are finding the amount of work done over a non-conservative vector field F r, we do that long ur r b ur =

Chapters 5-8. Dynamics: Applying Newton s Laws

B. Spherical Wave Propagation

The Derivative of the Sine and Cosine. A New Derivation Approach

Physical Chemistry II (Chapter 4 1) Rigid Rotor Models and Angular Momentum Eigenstates

7.2.1 Basic relations for Torsion of Circular Members

Physics 505 Homework No. 9 Solutions S9-1

Transcription:

50

LECTURE 12 Special Solutions of Laplace's Equation 1. Sepaation of Vaiables with Respect to Catesian Coodinates Suppose è12.1è èx; yè =XèxèY èyè is a solution of è12.2è Then we must have è12.3è 2 x 2 2 y =0 : 2 Y d2 X dx 2 X d2 Y dy 2 =0 : Applying the usual sepaation of vaiables agument, we ænd è12.4è d 2 X dx 2 2 X = 0 è Xèxè =A sinèèbcosèè d 2 Y dy, 2 2 Y = 0 è Y èyè =Ce,y De y : when the sepaation constant K is a positive eal numbe 2 é 0. The possibility that the K = 0 should not be excluded, howeve. Fo this special case we would have è12.5è No should we exclude the case when K =, 2 é 0: d 2 X dx 2 = 0 è Xèxè =ax b ; d 2 Y dy 2 = 0 è Y èyè =cy d : è12.6è d 2 X dx 2, 2 X = 0 è Xèxè =Ae,x Be x d 2 Y dy 2 2 Y = 0 è Y èyè =C sinèyèd cosèyè : Thus sepaation of vaiables yields thee 4-paamete families of solutions. è12.7è 0 èx; yè = axy bx cy d èx; yè = Ae y sinèxèbe,y sinèxèce y cosèxède,y cosèxè i èx; yè = Ae x sinèyè Be,x sinèyèce x cosèyède,x cosèyè 2. Sepaation of Vaiables with Respect to Pola Coodinates If we make a change of vaiables to pola coodinates è12.8è x = cosèè y = sinèè æ p = x 2, y 2 = tan,1 y x 51

52 12. SPECIAL SOLUTIONS OF LAPLACE'S EQUATION then and è12.9è x = x x = cosèè, sinèè = y y y = sinèè cosèè 2 x 2 = 2 y 2 = cosèè, sinèè = cos 2 2, 2 2 cosèè sinèè 2 sinèè cosèè = sin 2 èè 2, cosèè, sinèè sinèè cosèè sin2 èè 2 2 2 sin2 èè sinèè cosèè sinèè cosèè 2 cosèè sinèè 2 cos2 èè 2 2 2 cos2 èè cosèè sinèè, 2 sinèè cosèè 2 2 x 2 2 y = 2 2 1 2 1 2 : 2 2 Thus, in pola coodinates Laplace's equation takes the fom è12.10è If we set è12.11è 2 1 2 1 2 2 =0 : 2 è;è=rèèæèè : and plug è12.11è into è12.10è and then divide by Rèèæèè then we obtain R 00 R R0 R æ00 2 æ =0 o 2 R00 R R0 R =,æ00 æ : Applying the sepaation of vaiables agument we now look fo solutions of è12.12è If 2 6= 0, then the second equation has as solutions è12.13è 2 R 00 R 0, 2 R = 0 æ 00 2 æ = 0 æèè =A cosèèb sinèè : In ode fo such solutions to be continuous acoss the ay = 0 èi.e. so that æè2è = æè0èè we must demand that = n 2 N = f1; 2; 3;:::g. Fo such the æst equation in è12.12è is an Eule-type equation which has as solutions è12.14è If 2 = 0, then è12.12è educes to è12.15è Rèè =A n B,n : R 00 R 0 = 0 æ 00 = 0 The geneal solution of the second equation is obviously è12.16è æèè =a b : To solve the æst, we set W = R 0 so that we can educe it to the following æst ode ODE è12.17è, 1 = W 0 W = d èlnèw èè d

Integating both sides of this equation yields è12.18è o 3. POLYNOMIAL SOLUTIONS 53, ln jj =lnèw èc 0 è12.19è W = C Replacing the left hand side of è12.19è R 0 and then integating both sides of yields è12.20è Rèè =C ln jj D We thus aive at the following two families of solutions è12.21è è12.22è n è;è = A n cosènèb n sinènèc,n cosènèd,n sinènè 0 è;è = a ln jj b ln jj c d Fom the solution 0 è;è with 0 = a = c = d, we can infe the existence of a solution of the fom èx; yè =ln æ æ æèx, x o è 2 èy, y o è ææ 2 It can be easily checked that this is the only solution èup to a multiplicative andèo additive constantè of Laplace's equation that depends only the distance fom the point èx o ;y o è. It is called the fundamental solution of Laplace's equation. 3. Polynomial Solutions We have aleady seen that èx; yè =axy bx cy d is a solution of Laplace's equation. Let us now look to see if thee ae othe polynomial solutions. Suppose then Thus, is a solution of Laplace's equation. Similaly, if we set then and so èx; yè =Ax 2 By 2 0= 2 x 2 2 y 2 = A B è B =,A : èx; yè =A, x 2, y 2æ èx; yè =Ax 3 Bx 2 y Cxy 2 Dy 3 0= 2 x 2 C =,3A =6Ax 2By 2Cx6Dy è 2 y2 B =,3D will be a solution of Laplace's equation. èx; yè =A, x 3, 2xy 2æ B, y 3, 3x 2 y æ Now let èx; yè be an abitay homogeneous polynomial of degee n: è12.23è èx; yè = nx a i x n,i y i :

54 12. SPECIAL SOLUTIONS OF LAPLACE'S EQUATION Then if this is to be a solution of Laplace's equation we must have è12.24è è12.25è è12.26è è12.27è 0 = 2 x 2 2 y 2 = = = nx n,2 X n,2 X èn, ièèn, i, 1èa i x n,i,2 y i nx X n,2 èn, ièèn, i, 1è a i x n,i,2 y i i èi, 1è a i x n,i y i,2 èi 2èèi 1èa i2 x n,2,i y i èèn, ièèn, i, 1èa i èi 2èèi 1èa i2 è x n,2,i y i and so è12.23è will be a solution of Laplace's equation if the coeæcients a i satisfy the following ecusion elation è12.28è a i2 = èn, ièèn, i, 1è a i : èi 1èèi 2è Note that these ecusion elations imply that fo each n 2 N thee ae pecisely two linealy independent homogeneous polynomial solutions of Laplace's equation èsince è12.28è tells that all the coeæcients a i ae completely detemined by a 0 and a 1 è. 4. Seies Solutions Conside the following PDEèBVP è12.29è 1 1 2 = 0 èr; è = fèè which is just Laplace's equation in pola coodinates with Diichlet bounday conditions imposed on the bounday of the cicle = R. To constuct a solution of è12.29è we shall æst expand the solution è;è in a seies of -dependent eigenfuctions: è12.30è è;è= 1 2 a 0èè 1X èa n èè cosènèb n èè sinènèè : We note that the tigonometic functions cosènè and sinènè ae eigenfunctions of the Stum-Liouville poblem with diæeential equation ècompae with è12.12è and bounday conditions æ 00 2 æ=0 æè0è = æè2è : Inseting è12.30è into è12.29è we obtain è12.31è 0 = a 00 0 1 a0 P P 1 0 1,, a 00, æ,n 2 a n cosènè, n 2 b n sinènè, æ æ n 1 næ a0 cosènè b 00 n 1 b0 n sinènè

4. SERIES SOLUTIONS 55 Multiplying both sides by cosènè o sinènè, integating with espect to fom 0 to 2, and employing the identities R 2 2 ; n =0 cosènèd = 0 0 ; n 6= 0 è12.32è we obtain R 2 sinènè cosèmèd = 0 ; 8 n; m 2 R Z 0 2 cosènè cosèmèd = æ 0 nm R 2 0 sinènè sinèmèd = æ nm a 00 n 1 a0 n, n2 2 a n = 0 ; n =0; 1; 2; 3;::: è12.33è b 00 n 1 b0 n, n2 2 b n = 0 ; n =1; 2; 3;::: These ae all Eule type ODEs which have as thei geneal solution è12.34è Rèè = A n B,n ; n 6= 0 Rèè = A B ln jj ; n =0 In ode fo ou solution to be egula at the oigin we must exclude solutions popotional to,n and ln jj. We theefoe take a n èè = A n n ; n =0; 1; 2; æææ è12.35è b n èè = B n n ; n =1; 2; 3; æææ to be the appopiate solutions of è12.33è. Hence, è12.25è becomes è12.36è è;è= 1 2 A 0 1X èa n n cosènèb n n sinènèè : To æx the constants A n ;B n wenow impose the bounday condition at = R; è12.37è fèè = 1 2 A 0 1X èa n R n cosènèb n R n sinènèè : Multiplying both sides of è12.37è by cosèmè o sinèmè and integating fom 0 to 2 then yields è12.38è R 1 2 A n = R n fèè cosènèd ; n =0; 1; 2; 3;::: R0 1 2 B n = R n fèè sinènèd ; n =1; 2; 3;::: 0 Homewok: Poblem 4.5.4