This week s topics. Week 6. FE 257. GIS and Forest Engineering Applications. Week 6

Similar documents
Georeferencing, Map Projections, Cartographic Concepts. -Coordinate Systems -Datum

What is a Map Projection?

Georeferencing. Place names Postal addresses Postal codes Coordinate systems (lat/long, UTM, etc.)

Map projections. Rüdiger Gens

Shape e o f f the e Earth

ch02.pdf chap2.pdf chap02.pdf

Understanding Projections for GIS

Welcome to Lesson 4. It is important for a GIS analyst to have a thorough understanding of map projections and coordinate systems.

Outline. Shape of the Earth. Geographic Coordinates (φ, λ, z) Ellipsoid or Spheroid Rotate an ellipse around an axis. Ellipse.

NR402 GIS Applications in Natural Resources Lesson 4 Map Projections

Lesson 5: Map Scale and Projections

WHERE ARE YOU? Maps & Geospatial Concepts Fall 2012

Lecture 4. Coordinate Systems & Projections

Applied Cartography and Introduction to GIS GEOG 2017 EL. Lecture-1 Chapters 1 and 2

Projections and Coordinate Systems

EnvSci360 Computer and Analytical Cartography

Lecture 10-14: Map Projections and Coordinate System

Intro to GIS Fall 2010 Georeferencing & Map Projections

Dr. ABOLGHASEM AKBARI Faculty of Civil Engineering & Earth Resources, University Malaysia Pahang (UMP)

Importance of Understanding Coordinate Systems and Map Projections.

1. Geospatial technology rarely links geospatial data to nonspatial data. a. True *b. False

The Wildlife Society Meet and Greet. Come learn about what the UNBC Student Chapter of TWS is all about!

WHERE ARE YOU? Maps & Geospatial Concepts Fall 2015

Map Projections. What does the world look like? AITOFF AZIMUTHAL EQUIDISTANT BEHRMANN EQUAL AREA CYLINDRICAL

12/26/2012. Geographic Information Systems * * * * GIS (... yrezaei

Map Projections. Displaying the earth on 2 dimensional maps

The Elements of GIS. Organizing Data and Information. The GIS Database. MAP and ATRIBUTE INFORMATION

How does an ellipsoid differ from a sphere in approximating the shape and size of the Earth?

Georeferencing. datum. projection. scale. The next few lectures will introduce you to these elements. on the Earth, you ll need to understand how

Coordinate Systems. Location on earth is defined by coordinates

REFERENCING COORDINATE SYSTEMS MAP PROJECTIONS GEOREFERENCING

Geographic coordinate systems

Introduction to Geographic Information Science. Updates/News. Last Lecture. Geography 4103 / Map Projections and Coordinate Systems

2. GETTING STARTED WITH GIS

Boolean Operators and Topological OVERLAY FUNCTIONS IN GIS

Working with georeferenced data. What is georeferencing? Coordinate Systems. Geographic and Projected Coordinate System

Map Projections & Coordinate Systems

Control Surveys and Coordinate Systems

Geo Referencing & Map projections CGI-GIRS 0910

Georeferencing. Geography is the key to linking attributes. Georeferencing is the key to geography.

Lab #3 Map Projections.

Geo Referencing & Map projections CGI-GIRS 0910

Mapping coordinate systems

Lecture 2. Map Projections and GIS Coordinate Systems. Tomislav Sapic GIS Technologist Faculty of Natural Resources Management Lakehead University

Georeferencing. Where on earth are we? Critical for importing and combining layers for mapping

Introduction to Cartography GEOG 2016 E. Lecture-2 Geodesy and Projections

A PRIMER ON COORDINATE SYSTEMS Commonly Used in Michigan

GIST 3300 / Geographic Information Systems. Last Time. Today

Map projections. Rüdiger Gens

BUILDING AN ACCURATE GIS

GEOGRAPHIC COORDINATE SYSTEMS

Projections & GIS Data Collection: An Overview

1/28/16. EGM101 Skills Toolbox. Oblate spheroid. The shape of the earth Co-ordinate systems Map projections. Geoid

Referencing map features: Coordinate systems and map projections

Map Projections & Coordinate Systems 9/10/2013. Why? M. Helper GEO327G/386G, UT Austin 2. M. Helper GEO327G/386G, UT Austin 4

Overview key concepts and terms (based on the textbook Chang 2006 and the practical manual)

Analytical and Computer Cartography Lecture 3: Review: Coordinate Systems

Projections Part I - Categories and Properties James R. Clynch February 2006

Geographers Perspectives on the World

The Nature of Spatial Data. Keith C. Clarke Geography UCSB

Map Projections & Coordinate Systems 1/25/2018

P erforming GIs processes and analyses in support

Map Projections & Coordinate Systems 9/7/2017

GPS Remote Sensing. GIS Photogrammetry. GEODESY Equipment (total station) CARTOGRAPHY Survey Software. Map Projection Coordinate Systems

Spatial Reference Systems. Introduction

Solving the "Grid to Ground Problem" with Custom Coordinate Systems CV327-6 About the Speaker:

When the Earth Was Flat. Measurements were made using a plumb bob, a spirit level, and a stick. Also, the Stars.

2. Which geometric model has been used at some time to describe the earth? a. Sphere b. Oblate ellipsoid c. Flat disk. d. Geoid e.

4 Survey Datums. 4.1 Horizontal Datum Policy SURVEY DATUMS SEPTEMBER 2006

Plane coordinates ~~~~~~~~~~

Dirty REMOTE SENSING : Lecture 8 A mapping interlude..

How can we project a 3D globe onto a 2D display? - Ellipsoids and Datums deal with earth non-sphericity

Coordinate Systems and Datum Transformation in ArcGIS. Brittney White and Melita Kennedy

Fundamentals of Surveying (LE/ESSE )

Introduction to Geographic Information Systems

GEOREFERENCING, PROJECTIONS Part I. PRESENTING DATA Part II

What is Geodesy? Types of Geodesy terrestrial or classical geodesy space geodesy theoretical geodesy

GEOL 452/552 - GIS for Geoscientists I. Lecture 15

Modern Navigation. Thomas Herring

Map Projections 2/4/2013. Map Projections. Rhumb Line (Loxodrome) Great Circle. The GLOBE. Line of constant bearing (e.g., 292.

Geodetics: Implications for GIS Professionals May 10, 2018

Navigation. Longitude and Latitude Foundations of Navigation. MTPs:

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

HORIZONTAL PROJECTION PARAMETERS: DANE COUNTY COORDINATES

ArcGIS for Applied Economists Session 2

Notes on Projections Part II - Common Projections James R. Clynch February 2006

NATRF 2022 AND LDP OCTOBER 11, 2017

Ground Truth Annual Conference. Optimized Design of Low Distortion Projections. Michael L. Dennis, RLS, PE

What is a map? A simple representation of the real world Two types of maps

Watershed Sciences 4930 & 6920 GEOGRAPHIC INFORMATION SYSTEMS

Tonight. {01} The map. Relative space. What does a map do? Types of maps GEOG 201 2/17/2010. Instructor: Pesses 1

Spatial Data, 16 th Century Dutchmen, GPS and GIS. Martin Charlton, National Centre for Geocomputation National University of Ireland Maynooth

GIS and Forest Engineering Applications FE 357 Lecture: 2 hours Lab: 2 hours 3 credits

GIS in Water Resources. Fall Homework #1

ENV101 EARTH SYSTEMS

An ESRI Technical Paper June 2007 Understanding Coordinate Management in the Geodatabase

Geog Lecture 29 Mapping and GIS Continued

Map Projections. Chapter 4 MAP PROJECTION

Fri. Jan. 26, Demonstration of QGIS with GPS tracks. Types of data, simple vector (shapefile) formats

The 3-D Global Spatial Data Model: Geometrical Foundation of the Global Spatial Data Infrastructure

Transcription:

FE 257. GIS and Forest Engineering Applications Week 6 Week 6 Last week Chapter 8 Combining and splitting landscape features and merging GIS databases Chapter 11 Overlay processes Questions? Next week Chapter 13: Raster GIS Database Analysis Chapter 9: Associating Spatial and Nonspatial Databases This week s topics Chapter 2 Map projections: pp. 27-37 Where in the world are my data? 1

Geographic Information Systems Applications in Natural Resource Management Chapter 2 GIS Databases: Map Projections, Structures, and Scale Michael G. Wing & Pete Bettinger Chapter 2 Objectives Definition of a map projection, and the components that comprise a projection Components and characteristics of a raster data structure Components and characteristics of a vector data structure The purpose and structure of metadata Likely sources of GIS databases that describe natural resources within North America Types of information available on a typical topographic map and Definition of scale and resolution as they relate to GIS databases Big questions What is the size and shape of the earth? Geodesy: the science of measurements that account for the curvature of the earth and gravitational forces We are still refining our approximation of the earth s shape but are relying on GPS measurements for much of this work 2

Vertical Rays parallel to the sun 7 12 Alexandria Earth 360 / 7 12 = 1/50 500 miles * 50 = 25,000 Syene 7 12 Figure 2.1. Eratosthenes (276-194 BC) approach to determining the Earth s circumference. North Pole b Equator a Ellipsoid Figure 2.2. The ellipsoidal shape of the Earth deviates from a perfect circle by flattening at the poles and bulging at the equator. Isaac Newton (end of the 17 th century) theorized this shape. Field measurements, beginning in 1735, confirmed it. Earth measurements & models Datums Horizontal and vertical control measurements Ellipsoids (spheroids) The big picture Geoids Gravity and elevation 3

Horizontal Datums Geodetic datums define the orientation of the coordinate systems used to map the earth Where do X, Y, and Z (vertical datum) start? Hundreds of different datums exist Referencing geodetic coordinates to the wrong datum can result in position errors of hundreds of meters. NAD83 preferred Uses center of the earth as starting point Many GPS systems use WGS84 Vertical Datums National Geodetic Vertical Datum of 1929 NGVD29 26 gaging stations reading mean sea level North American Vertical Datum of 1988 NAVD88 1.3 million readings Has become the preferred datum in the US Spheroids Newton defined the earth as an ellipse rather than a perfect circle (1687) Spheroids are all called ellipsoids Represents the elliptical shape of the earth Flattening of the earth at the poles results in about a twenty kilometer difference at the poles between an average spherical radius and the measured polar radius of the earth Clarke Spheroid of 1866 and Geodetic Reference System (GRS) of 1980 are common WGS84 has its own ellispoid 4

Geoids Attempts to reconcile the non-spherical shape of the earth Earth has different densities depending on where you are and gravity varies A geoid describes earth s mean sea-level perpendicular at all points to gravity Coincides with mean sea level in oceans Geoid is below ellipsoid in the conterminous US Important for determining elevations and for measuring features across large study areas Figure 2.3. Earth, geoid, and spheroid surfaces Spheroid Geoid Earth Coordinate Systems Used to describe the location of an object Many basic coordinate systems exist Instrument (digitizer) Coordinates State Plane coordinates UTM Coordinates Geographic Rene Descartes (1596-1650) introduced systems of coordinates Two and three-dimensional systems used in analytical geometry are referred to as Cartesian coordinate systems 5

y 9 8 7 6 5 4 3 2,6 2 1 6,1 0 1 2 3 4 5 6 7 8 9 x Figure 2.4. Example of point locations as identified by Cartesian coordinate geometry. 90 North latitude 30 N, 30 W W E N S 0 latitude 30 S, 60 E Equator 90 South latitude Prime meridian Figure 2.5. Geographic coordinates as determined from angular distance from the center of the Earth and referenced to the equator and prime meridian. Geographic coordinates Longitude, latitude (degrees, minutes, seconds) 6

Map Projections Map projections are attempts to portray the surface of the earth or a portion of the earth on a flat surface Earth features displayed on a computer monitor or on a map Earth is not round, has a liquid core, is not static, and has differing gravitational forces Distortions of conformality, distance, direction, scale, and area always result Many different projection types exist: Map projection process: 2 steps Measurements from the earth are placed on a three-dimensional globe or curved surface that reflects the reduced scale in which measurements are to be viewed or mapped This is the reference globe Measurements placed on the threedimensional reference globe are then transformed to a two-dimensional surface Envisioning map projections Transforming three-dimensional earth measurements to a two-dimensional map sheet Visualize projecting a light from the middle of the earth and shining the earth s features onto a map The map sheet may be: Cylindrical Conic 7

Figure 2.6. The Earth s graticule projected onto azimuthal, cylindrical, and conic surfaces. Azimuthal Cylindrical Conic Figure 2.7. Examples of secant azimuthal, cylindrical, and conic map projections. Azimuthal Cylindrical Conic Map projections within GIS There are several components that make up a projection: Projection classification (the strategy that drives projection parameters) Coordinates Datum Spheroid or Ellipsoid Geoid Most full-featured GIS can project coordinate systems to represent earth measurements on a flat surface (map) ArcGIS handles most projections 8

Map projection importance GIS analysis relies strongly on covers being in the same coordinate system or projection Do not trust projections on the fly This is the visual referencing of databases in different projections to what appears to be a common projection Failure to ensure this condition will lead to bad analysis results You should always try to get information about the projection of any spatial themes that you work with Metadata- The classification of map projections according to how they address distortion Conformal Useful when the determination of distances or angles is important Navigation and topographic maps Equal area Will maintain the relative size and shape of landscape features Azimuthal Figure 2.8. The orientation of the Mercator and transverse Mercator to the projection cylinder. Mercator transverse Mercator 9

Common Map Projections Lambert (Conformal Conic)- Area and shape are distorted away from standard parallels Used for most west-east State Plane zones There is also a Lambert Azimuthal projection that is planar-based Albers Equal Area (Secant Conic)- Maintains the size and shape of landscape features Sacrifices linear and distance relationships Mercator (Conformal Cylindrical)- straight lines on the map are lines of constant azimuth, useful for navigation since local shapes are not distorted Transverse Mercator is used for north-south State Plane zones Planar coordinate systems Used for locating features on a flat surface Universal Transverse Mercator The most popular coordinate system in the U.S. and Canada Even used on Mars 1:2,500 accuracy State plane coordinate system Housed within a Lambert conformal conic or Tranverse Mercator projection 1:10,000 accuracy 126 W 120 W 114 W 108 W 102 W 96 W 90 W 84 W 78 W 72 W 66 W 10 11 12 13 14 15 16 17 18 19 Figure 2.9. UTM zones and longitude lines for the U.S. 10

Where do coordinates come from? Many measurements Initially these are manual measurements The Dominion Land Survey within Canada GPS is now used to refine measurements and support coordinate systems Public Lands Survey System The mapping of the U.S. and where U.S. coordinates originated from Thomas Jefferson proposed the Land Ordinance of 1785 Begin surveying and selling (disposing) of lands to address national debt Surveying begins in Oregon in 1850 U.S. not linked by the PLS until 1903! Provided first quantitative measurement from coast-to-coast Figure 2.10. Origin, township, and section components of the Public Land Survey System. 6 7 18 T2N R3E 5 4 3 2 8 9 10 11 17 16 15 14 1 12 13 First Standard Parallel North 19 20 21 22 23 24 First Guide Meridian West Baseline Principal Meridian T2N R3E Initial Point First Standard Parallel South First Guide Meridian East 30 29 28 27 26 25 31 32 33 34 35 36 NW 1/4, NE 1/4, Section 17 NW NE ¼ ¼ NE NE NW 1/4 1/4 1/4 SW SE ¼ ¼ NE NE 1/4 1/4 N1/2 SW 1/4 W1/2 E1/2 SE 1/4 SE 1/4 S1/2 SW 1/4 11

ArcGIS has Projection Capabilities ArcGIS Projection Abilities ArcView will allow you to project shapefiles ArcEditor and ArcInfo will allow you to project shapefiles and coverages Geodatabase projections work with all licenses ArcGIS Response to Projection Mismatch Projection challenges Within several miles of Oregon State University, you would find several different map projections being applied to spatial databases Siuslaw National Forest UTM (Universal Transverse Mercator) zone 10, NAD27 Benton County Public Works & McDonald Forest Oregon State Plane North, NAD83/91 OSU Departments Various map projections A potential solution Create a map projection customized for Oregon Oregon Centered Lambert, NAD83 12

Oregon s Projection Selected by state leaders in 1996 Designed to centralize projections used by state agencies Projection: LAMBERT Datum: NAD83 Units INTERNATIONAL FEET, 3.28084 units = 1 meter (.3048 Meters) Spheroid GRS1980 Oregon s Projection Specifics 43 00 00.00 /* 1st standard parallel 45 30 00.00 /* 2nd standard parallel -120 30 0.00 /* central meridian 41 45 0.00 /* latitude of projection's origin -400,000.00 /* false easting (meters), (1,312,335.958 feet) 0.00 /* false northing (meters) 13

Finding projection information Should always be part of the metadata document Example: the Oregon Geospatial Enterprise Office http://www.oregon.gov/das/eispd/geo/alphali st.shtml Can also be stored as part of an ArcInfo coverage or an ArcView shapefile You can return projection information in workstation ArcInfo with the DESCRIBE command The.prj part of the shapefile will contain projection information but it is not created automatically- a user must create the file Projection information Within ArcGIS, you can examine projection information (if it exists) by examining a layer s properties Without the projection information, you ll need to do detective work Probability for success: low Wing, M.G. 2011. Measurement differences resulting from analyzing natural resource spatial databases referenced to multiple map coordinate systems. Mathematical and Computational Forestry & Natural Resource Sciences 3(2):53-63. 14