Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions

Similar documents
Surprises from the spin Hall effect how the spin Hall effect and relativistic torques are opening new paths for information storage

Lecture I. Spin Orbitronics

Lecture I. Spin Orbitronics

Antiferromagnetic Spintronics

MSE 7025 Magnetic Materials (and Spintronics)

Spin injection and absorption in antiferromagnets

An Overview of Spintronics in 2D Materials

Expecting the unexpected in the spin Hall effect: from fundamental to practical

Recent developments in spintronic

Electrical switching of an antiferromagnet arxiv: v2 [cond-mat.mes-hall] 20 Jul 2015

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

Spin-orbit effects in graphene and graphene-like materials. Józef Barnaś

Microwave fields driven domain wall motions in antiferromagnetic nanowires. Microstructures, Nanjing University, Nanjing , China

Physics in Quasi-2D Materials for Spintronics Applications

Dirac fermions in condensed matters

THEORY OF SPIN HALL EFFECT AND INTERFACE SPIN-ORBIT COUPLING

Observation of an anti-damping spin-orbit torque originating from the Berry curvature

Topological Insulators and Ferromagnets: appearance of flat surface bands

Optical studies of current-induced magnetization

Spin dynamics in Bi 2 Se 3 /ferromagnet heterostructures

Heusler compounds: Tunable materials with non trivial topologies. Claudia Felser

Dirac semimetal in three dimensions

Anomalous Hall effect in multiband disordered systems: from the metallic to the hopping regime

Determination of the Interfacial Dzyaloshinskii-Moriya Interaction (idmi) in the Inversion Symmetry Broken Systems

Gauge Concepts in Theoretical Applied Physics

Spin orbit torque driven magnetic switching and memory. Debanjan Bhowmik

Center for Spintronic Materials, Interfaces, and Novel Architectures. Voltage Controlled Antiferromagnetics and Future Spin Memory

Spin-transport, spin-torque and memory in antiferromagnetic devices: Part of a collection of reviews on antiferromagnetic spintronics

An Intrinsic Spin Orbit Torque Nano-Oscillator

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Mesoscopic Spintronics

Spin torques and spin transport in antiferromagnets

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

1. Chiral anomaly in Na 3 Bi and the half-heusler GdPtBi 2. Thermopower of Weyl fermions 3. Prelim results on nonsymmorphic semimetal KHgSb

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Spin-orbit driven ferromagnetic resonance: A nanoscale magnetic characterisation technique. Abstract

Band Topology Theory and Topological Materials Prediction

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

Mesoscopic Spintronics

SUPPLEMENTARY INFORMATION

Supplementary Figure 1. Magneto-transport characteristics of topological semimetal Cd 3 As 2 microribbon. (a) Measured resistance (R) as a function

Weyl semimetals from chiral anomaly to fractional chiral metal

Symmetry Protected Topological Insulators and Semimetals

Topological insulators

The Quantum Spin Hall Effect

Magnetic skyrmions. See also talks online by Tokura, Tchernyshyov. Institute for Theoretical Physics Utrecht University

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

From graphene to Z2 topological insulator

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Weyl fermions and the Anomalous Hall Effect

Introduction to topological insulators. Jennifer Cano

A Dirac nodal line metal for topological antiferromagnetic spintronics

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Spin Hall effect and related issues. Dept of Physics Taiwan Normal Univ. Ming-Che Chang

Fabrication and Measurement of Spin Devices. Purdue Birck Presentation

Spin-orbit proximity effects in graphene on TMDCs. Jaroslav Fabian

Introductory lecture on topological insulators. Reza Asgari

Electron spins in nonmagnetic semiconductors

Spin and Charge transport in Ferromagnetic Graphene

Berry Phase Effects on Electronic Properties

Ferromagnetism and Anomalous Hall Effect in Graphene

Hartmut Buhmann. Physikalisches Institut, EP3 Universität Würzburg Germany

Fermi level dependent charge-to-spin current conversion by Dirac surface state of topological insulators

Spin-torque nano-oscillators trends and challenging

Fundamental concepts of spintronics

Topological Insulators

Spintronics KITP, UCSB. Interfacial spin-orbit coupling and chirality. Hyun-Woo Lee (POSTECH, KOREA)

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spin Current and Spin Seebeck Effect

Topological Photonics with Heavy-Photon Bands

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Topological thermoelectrics

Room-temperature perpendicular magnetization switching through giant spin-orbit torque from sputtered Bi x Se (1-x) topological insulator material

Basics of topological insulator

THz electrical writing speed in an antiferromagnetic memory

Topological insulator (TI)

Matching domain wall configuration and spin-orbit torques for very efficient domain-wall motion

Spin pumping in Ferromagnet-Topological Insulator-Ferromagnet Heterostructures Supplementary Information.

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Physics in two dimensions in the lab

Transient grating measurements of spin diffusion. Joe Orenstein UC Berkeley and Lawrence Berkeley National Lab

Electrical spin-injection into semiconductors

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

Spin torque control of antiferromagnetic moments in NiO

Spin-orbit Effects in Semiconductor Spintronics. Laurens Molenkamp Physikalisches Institut (EP3) University of Würzburg

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

Anisotropic Current-Controlled Magnetization Reversal in the Ferromagnetic Semiconductor (Ga,Mn)As

Topological Physics in Band Insulators II

Magnetic domain theory in dynamics

Quantitative Mappings from Symmetry to Topology

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

Physics and applications (I)

Weyl semi-metal: a New Topological State in Condensed Matter

arxiv: v1 [cond-mat.mes-hall] 7 May 2018

Spin Orbit Coupling (SOC) in Graphene

SUPPLEMENTARY INFORMATION

Tutorial: Berry phase and Berry curvature in solids

arxiv: v2 [cond-mat.mtrl-sci] 4 Jan 2018

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Transcription:

Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions Jairo Sinova Johannes Gutenberg Universität Mainz 1th of October 216 Nanoscience and Quantum Transport Kiev, Ukraine Sinova et al RMP 215, Zelezny et al PRL 214/PRB 216, Ciccarelli, Gayles, et al Nature Physics 216, Gomonay, et al PRL 216, Smejkal, et al in prepration (216) Gayles, Zelezny, Smejkal, Ciccarelli, Gomonay, Jungwirth, Molenkamp, Yuan, Kurebayashi, Ferguson, Mukrausov Institute of Physics Prague Univ. of Nottingham Univ. of Cambridge Univ. of Würzburg

Antiferromagnetic Spintronics: Neél spin-orbit torques to Dirac fermions I. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques: Intrinsic SOT in GaMnAs SOT in NiMnSb II. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque III.Topological Dirac Fermion + Antiferromagnets + Neel SOTs I.Relativistic physics in solid state IV.SPICE Kurebayashi, et al., Nat. Nanot. (214) Ciccarelli, et al., Nat. Phys. (216) Sinova,et al RMP (215) Zelezny, Gao, JS, Jungwirth PRL (214) Zelazny, Gao, et al. PRB (216) Gomonay, Jungwirth, Sinova PRL (216) Smejkal, et al in prepration (216) 2

Spin-current and spin-polarization generation by currents Inverse Spin Galvanic Effect or Edelstein Effect (Reverse process of circular photo-galvanic effect, Ganichev et al., 21) ky kx δs δs= y J x Spin Hall Effect in p-gaas Effective fields 1-1 T Spin polarizations 1-1% Wunderlich et at. arxiv 4, PRL 5 3

Experiments of in-plane current switching Miron et al., Nature 11 spin-orbit torque at PM/FM interface ky Buhrman,et al., Science 12 SHE as spin-current generator + STT kx J x δs= δsy hsot z J ~ dm dt! = SOT ~ dm dt! intrinsic SHE + STT SHE ST T = P M (n M ) Jex ~ M ~s ~ Intrinsic SHE in paramagnet acts as the external polarizer 4

Measuring spin-orbit fields: electrical induced/detected FMR Landau-Lifshitz-Gilbert equation h z h y h x V dc (μv) Because h so =-J pd Δs μ H (T) the V amplitudes contain spin-orbit fields information. 5

Torque types and line-shapes Vsym Vasy Anti-damping torque Τ in-plane (or h z ) V sym = C 1 h z (θ M-E ) sin (2θ M-E ) + Field-like/Rashba torque Τ out-of-plane (h x & h y ) V asy = C 2 sin(2θ M-E ) (-h x (θ M-E )sin(θ M-E ) +h y (θ M-E )cos(θ M-E )) Kurebayashi, Sinova et al., Nature Nanotech. (214) Fang et al., Nature Nanotech. (211) 6

Spin-orbit Torques in Bilayer Systems Spin Hall Rashba Courtesy of P. Gambardella 7

Linear response I. (condensed matter class) Boltzmann theory: non-equilibrium distribution function and equilibrium states Extrinsic (skew-scattering) SHE X 1 ~js = ~js (~k)g~ k V Field-like SOT 1 X ~ ~s = ~s(k)g~k V ~ k ~ k jc δsy J x Dyakonov and Perel 1971 Hirsch PRL 99 Kato et al., Science 4 g! n,k = f! n,k f (E )! n,k ~ dm dt! = SOT Jex ~ M ~s ~ 8

Linear response II. (condensed matter class) Perturbation theory: equilibrium distribution function and non-equilibrium states Intrinsic SHE from linear response II z ĵ y E x j z y = X ~k ~k i = ~ kie ie ~ k t + e i! h ~k (t) ĵ z y ~k if (E ~k ) X ~ kn6=n ~ kn h i ~ kn E ~ ˆv ~ kni E ~kn E ~kn + ~! e i(e ~ +!)t kn + Murakami,et al, Science 3 Sinova, et al. PRL 4 Wunderlich et al. Phys. Rev. Lett. 5 Werake et al., PRL 11 Scattering-independent anti-damping SOT from linear response II. 9

Intrinsic (Berry phase) spin-orbit torque from Bloch eq. Large exchange limit and Rashba SOC ~ M [1] Δp eet [1] ~ E eq eff B ~ M dm M sz z maximum dt Bef f py!! sz z for M E 1

Intrinsic (Berry phase) spin-orbit torque from Bloch eq. Large exchange limit and Rashba SOC [1] Δp eet [1 [1] [1 ~E M eq B ~ M eff M B eq eff d ˆM dt ~ M d ˆM dt B eff pŷ anti-damping ˆM s zero for M! E! z ẑ s z ẑ ˆM s z ẑ s z ẑ ( ~ E ẑ) ˆM cos( M E ) 11

Intrinsic (Berry phase) spin-orbit torque in GaMnAs [1] [1] [11] [11] GaMnAs Rashba [1] GaMnAs GaAs Dresselhaus [1] d ˆM dt! SOT = ˆM s z ( M E )ẑ angle between M and current direction current direction 12

Comparison of Experiment -Theory Solid line: Calculations with H KL (captures higher harmonics) µ h z [ µt ] 15 1 5-5 -1 [1] [1] 15 1 5-5 -1 [1] S // M [1] -15-15 15 9 18 27 9 18 27 15 µ h z [ µt ] 1 5-5 -1 [1-1] [11] 1 5-5 -1-15 -15 9 18 27 36 θ M-J 9 18 27 36 θ M-J Kurebayashi, et al., Nature Nanotech (214) 13

Other Materials: Half Heuslers NiMnSb Tc = 73 K in bulk 15

SOT Torque: dominated by field like term NiMnSb Z&[1]& MS(φ) I [11] φ& [1#1]& Kubo I [11] Scattering Formalism Jacob Gayles Z&[1]& I [11] By& In Plane Bx& MS(ϕ)& [1/1]& Z&[1]& I [11] By& Out of Plane Bx& MS(ϕ)& [1/1]& 15

Room-temperature SOT in NiMnSb Ciccarelli, et al., Nature Physics (216) 25 μt J 2 [11] z y x J 1 [1-1] 15 15 1 5 V asy V sym 1 5 V asy V sym V dc (µv) -5 V dc (µv) -5-1 [1-1] -15 9 18 27 36 φ (deg) The driving field is linear in current: -1 [11] -15 9 18 27 36 φ (deg) 16

Antiferromagnetic Spintronics: Neél spin-orbit torques to Diract fermions I. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques: Intrinsic SOT in GaMnAs SOT in NiMnSb II. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque III.Topological Dirac Fermion + Antiferromagnets + Neel SOTs I.Relativistic physics in solid state IV.SPICE Kurebayashi, et al., Nat. Nanot. (214) Ciccarelli, et al., Nat. Phys. (216) Sinova,et al RMP (215) Zelezny, Gao, JS, Jungwirth PRL (214) Zelazny, Gao, et al. PRB (216) Gomonay, Jungwirth, Sinova PRL (216) Smejkal, et al in prepration (216) 17

Antiferromagnetic Spintronics Need Spin-Orbit Torques Reviews: MacDonald & Tsoi Phil. Trans. R. Soc. A 369, 398 (211) Gomonay & Loktev Low Temp. Phys. 4, 17 (214) TJ, Marti, Wadley, Wunderlich Nature Nanotech. 11, 231 (216) Baltz, Manchon, Tsoi, Moriyama, Ono, Tserkovnyak http://arxiv.org/abs/ 166.4284 18

Why antiferromagnetic spintronics Ferromagnets Antiferromagnet Spin-order with M Spin-order with M= Magneto-electronics (spintronics): non-volatility, radiation-hardness, speed, energy,... Allow for manipulation and detection by magnetic fields Do not allow for direct manipulation and detection by magnetic fields B.G. Park, et al, Nature Mater. 1 (211) Magnetic fields not used in advanced ferromagnetic spintronics Perturbed by <Tesla Produce ~Tesla nearby stray fields Insensitive to ~1-1 Tesla Produce no stray fields X. Marti, et al, arxiv:133.474 X. Marti, et al, Nat. Mater. (214) Speed limited by FM dynamics timescales Ultrafast due to AFM dynamics timescales Difficult to realize in semiconductors Many room-t semiconductors Reviews: Gomonay & Loktev Low Temp. Phys. 4, 17 (214); Jungwirth et al, Nature Nanotech. 11, 231 (216); Baltz, et al http://arxiv.org/abs/166.4284 19

Antiferromagnetic AMR experiment: AFM memory SQUID experiment: AFM at room-t m (x1-3 emu) 2 1-1 -2 RT 4 K -1 1 µ H (T) Negligible stray fields from the AFM Marti, Fina,Jungwirth et al. Nature Mater. 14, EP13196118, US311212 2

Antiferromagnetic AMR experiment: AFM memory Transport experiment: AFM-AMR memory read-out R (Ω) 11.3 11.25 1 3 5 step Marti, Fina,Jungwirth et al. Nature Mater. 14, EP13196118, US311212 21

Antiferromagnetic AMR experiment: AFM memory AFM memory with no stray fields and insensitive to magnetic field (tested up to 9 T) Comparable AMR to FM NiFeCo comparable size and read-out-time scaling Marti, Fina,Jungwirth et al. Nature Mater. 14, EP13196118, US311212 22

Antiferromagnetic Spin-orbitronics Writing by spin-orbit torque in a single-layer ferromagnet Magnet reversing itself : SOT STT SOT Néel SOT AFM J. Zelezny, et al, PRL (214) What type of current-induced polarisation can we generate? 23

Néel spin-orbit torque in a single-layer antiferromagnet ky HSOT z J kx S= Sy J x ky HSOT -z J kx S= Sy Zelezny, Gao, JS, Jungwirth, PRL (214) Antiferromagnet with broken sublattice space-inversion symmetry: (Mn2Au) 24

Néel spin-orbit torque in a single-layer antiferromagnet B(mT) (per 1 7 A/cm 2 ) B(mT) (per 1 7 A/cm 2 ).4.2 -.2 -.4.3.1 -.1 B x A B x B B y A B y B 45 9 135 18 Φ (Degrees) B z B B y B J x B y A B x B B x A -.3-9 -45 45 9 θ (Degrees) Antiferromagnet with broken sublattice space-inversion symmetry: (Mn 2 Au) B z A Zelezny, Gao, JS, Jungwirth, PRL (214) 25

How it works - kind of Frank Freimuth 26

!3 Néel SOT in CuMnAs Wadley et al, Science 216 CuMnAs" B" 8" 1" 2" 3" 4" 5" A"D" D Setting 3-7 3 ( '4 12 $ 22 2 P uls e (num be r Acm-2 C" 1 $ ( (!3 6 8 1 P uls e (num be r 4 6 8 P uls e )num be r + Figure"4""1 3 (A)"Transverse"resistance"using"orthogonal"probe"curr 2 (black)"and"3h7"(red)."(b)"dependence"of"the"change"in density"of"the"seung"pulse."the"dashed"line"is"a"guide 1 resistance"afer"current"pulses"alternately"along"ortho '1 1H6)"and"with"4.4"kOe"field"applied"(pulses"7H12)."(D)"M measured"by"squid"magnetometer." 5 6 7 8 9 1 44 6 6 8 81 1 12 14 16 S e tting +c urre nt+de ns ity+(ma /c m ) " be r $P uls e $num $ $ 3 Rashba field: 2 4 2 ΔR t+ (m Ω)!3 4 ( ΔR t((m Ω) ΔR t(m Ω) Setting 1-5 B" $ 3 ΔR t(m Ω) ΔR t((m Ω) 6" ( B ~ 3 mt per 4.4 )ko e )a pplie d '2 GaP" 17 ) ) ΔR t(m Ω) 7" B '1 6 8 1 12 14 16 $P uls e $num be r 2 A 1 4 N o)fie ld)a pplie d 4 CuMnAs C" 2 + A" C" 4 N o)fie ld)a pplie d ) 4.4 )ko e )a pplie d D" ( (.8.5 27

XMLD microscopy and spectroscopy J write [1] [1] 1 µm XMLD (a.u.) XMLD (%) 1-1 Experiment Theory 64 65 Photon energy 28

From prediction, to observation, to device in 1 one year!! Works like this but not done like this Electrical read/write antiferromagnetic memory Wadley, TJ et al. Science 16, TJ, Marti, Wadley, Wunderlich, Nature Nanotech. 16 29

How to use the Neel SOT? Gomonay, Jungwirth, JS PRL (216) M1 θ M2 Ω Speeds of ~ 5 km/sec!! x 3

Writing by Néel spin-orbit torque in a single-layer antiferromagnet 2D Antiferromagnet with Rashba SOC intrinsic Néel SOT can be much larger than FM SOTs!! BUT intrinsic Néel SOT 45 9 135 18 Φ (Degrees) extrinsic/rashba Néel SOT= B z A B z B.2 -.2 B(mT) (per.1 A/cm) Antiferromagnet with broken global space-inversion symmetry: 2D-AFM+Rashba B x B B z B B z A B x A -45 45 9 θ (Degrees).2 -.2 B(mT) (per.1 A/cm) 31

Writing by Néel spin-orbit torque in a single-layer antiferromagnet 2D Antiferromagnet with Rashba SOC intrinsic Néel SOT can be much larger than FM SOTs!! E(eV) E(eV) 15 1 5-5 -1 -X Γ X M Γ k 15 1 5-5 -1-15 -X Γ X M Γ k.2.2.1.1 DOS(states ev -1 nm -2 ) Antiferromagnet with broken global space-inversion symmetry: 2D-AFM+Rashba 32

Antiferromagnetic Spintronics: Neél spin-orbit torques to Diract fermions I. Spin-Orbit Torques in Ferromagnets: SHE and Inverse spin galvanic effect phenomenology Spin-Orbit Torques: Intrinsic SOT in GaMnAs SOT in NiMnSb Kurebayashi, et al., Nat. Nanot. (214) Ciccarelli, et al., Nat. Phys. (216) II. Antiferromagnetic Spintronics: Neél SOTs Active manipulation of Néel order by currents: Néel spin-orbit torque Zelezny, Gao, JS, Jungwirth PRL (214) Zelazny, Gao, et al. PRB (216) Gomonay, Jungwirth, Sinova PRL (216) III.Topological Dirac Fermion + Antiferromagnets + Neel SOTs I.Relativistic physics in solid state Smejkal, et al in prepration (216) Sinova,et al RMP (215) 33

216 Dirac/Weyl semimetals Néel SOT SOT 3D TI QSHE 2D TI graphene 23 SHE 34

Coexistence of Topological Dirac fermions and Néel SOT? E Relativistic fermions Topology? k Wan, PRB (211) Magnetic order Železný, JS, Jungwirth, PRL (214), arxiv (216) Wadley, Science (216) Γ X Z U Néel spin-orbit torques Libor Smejkal, et al (216) 35

Relativistic physics, topological semimetals and spinorbitronics effects 36

Dirac and Weyl fermions Relativistic quantum field theory = spinor fields + Lorentz invariant building blocks E E k k graphene http://phelafel.technion.ac.il/ ~tzipora/band_theory.html 37

Ab initio leading experiment: Topological Semimetal Dirac semimetals Na 3 Bi 212 1 /213 2 214 3 Weyl semimetal Y 2 Ir 2 O 7 Weyl semimetal TaAs 211 4 215 5,6 215 7-9 1 3D Dirac semimetals Young, Kane, Mele et al. PRL (212) 3 Liu et al. Science (214) 2 Na 3 Bi candidate Wang Na3Bi PRB (212) 38

Ab initio leading experiment: Topological Semimetal Dirac semimetals Na3Bi 2121/2132 2143 Weyl semimetal Y2Ir2O7 Weyl semimetal TaAs 2114 2155,6 2157-9 Symmetry breaking Time reversal broken Pyrochlore iridates Wan PRB (211) Noncentrosymmetric TaAs family: 5,7 Hasan group (214/15), 6Weng, Bernevig PRX(215), 8Lv PRX(215), 9 C. Felser group, Nat. Phys. (215) 39

Large mobilities Liang, Nature Materials (215) Ultrahigh mobility and giant magnetoresistance in Dirac semimetal Cd3As2 Bi nanowires Mechanism? Suppression of backscattering? 9 16 cm2 V 1 s 1 at 5 K Si 4

Can we control the relativistic fermions electrically? Libor Smejkal 41

Model of AFM topological semimetal B A δs B PT δs A [1] J [1] [1] 42

Quasi-2D variant (½ ) A U' A' B [1] PT (½ ) M [1] M' x Y M +i -i X' Г X -i +i 43

Dirac fermions in antiferromagnets CuMnX (X=As/P) tetra. ortho. Full potential ELK code DFT(FLAPW)+PBE+SOC Nonsymmorphic symmetry 44

Electrical control of Dirac fermions Demonstration of inplane Field like torque manipulation Demonstration of (1)! inplane Field like torque Nonsymmorphic symmetry: Screw axis+glide plane 45

Electrical control of phases Dirac semimetal SOC (1) Semiconductor SOC (11) 46

SUMMARY SHE and ISGE SOT in a single-layer ferromagnet Kurebayashi, et al., Nature Nanotech (214) ~ E JS,Valenzuela, Wunderlich, Back, Jungwirth RMP (215) Néel SOT in a singlelayer antiferromagnet J. Zelezny, et al, PRL (214) J. Zelezny, et al, PRB (216) O. Gomonay, et al, PRL (216) Wadley, Jungwirth et al Science (216) Bef f M eq Beff ~ M py Kurebayashi, et al., Nature Physics (216) Electrical control of Dirac fermions and topological phases Topological Dirac Semi Metal+ AFM (i) Neel SOT physics (ii) Libor Smejkal, et al (216) 47