Hubble s Constant and Flat Rotation Curves of Stars: Are Dark Matter and Energy Needed?

Similar documents
Energy Conservation and Gravitational Wavelength Effect of the Gravitational Propagation Delay Analysis

(2017) Relativistic Formulae for the Biquaternionic. Model of Electro-Gravimagnetic Charges and Currents

Abstract. Keywords. 1. Introduction. Alexandre Chaloum Elbeze

Helicoidal Surfaces and Their Relationship to Bonnet Surfaces

Potential-energy of the photon emitted by an atom: And the cosmological red-shift

Modelling the Dynamical State of the Projected Primary and Secondary Intra-Solution-Particle

Cosmic Landscape Introduction Study Notes

Redshift Caused by Acceleration Doppler Effect and Hubble s Law Based on Wu s Spacetime Accelerating Shrinkage Theory

The Milky Way, Hubble Law, the expansion of the Universe and Dark Matter Chapter 14 and 15 The Milky Way Galaxy and the two Magellanic Clouds.

ASTRON 331 Astrophysics TEST 1 May 5, This is a closed-book test. No notes, books, or calculators allowed.

Macroscopic Equation and Its Application for Free Ways

Chapter 22 What do we mean by dark matter and dark energy?

Lift Truck Load Stress in Concrete Floors

Class 5 Cosmology Large-Scale Structure of the Universe What do we see? Big Bang Cosmology What model explains what we see?

Modern Physics notes Spring 2005 Paul Fendley Lecture 38

AST1100 Lecture Notes

Properties a Special Case of Weighted Distribution.

The Seismic-Geological Comprehensive Prediction Method of the Low Permeability Calcareous Sandstone Reservoir

Area Classification of Surrounding Parking Facility Based on Land Use Functionality

The Qualitative and Quantitative Methods of Kovalevskys Case

Phys333 - sample questions for final

Evaluation of the Characteristic of Adsorption in a Double-Effect Adsorption Chiller with FAM-Z01

Astronomy 102: Stars and Galaxies Review Exam 3

Lecture 10: Cosmology and the Future of Astronomical Research

The Early Universe: A Journey into the Past

AST-1002 Section 0459 Review for Final Exam Please do not forget about doing the evaluation!

Hubble Law indicates intelligent design of universe

In Quest of a True Model of the Universe 1

Estimates of the Enclosed Mass and its Distribution. for several Spiral Galaxies. Abstract

The Early Universe: A Journey into the Past

There are three basic types of galaxies:

Our View of the Milky Way. 23. The Milky Way Galaxy

Relationship Between Newtonian and MONDian Acceleration

Jodrell Bank Discovery Centre

80 2 Observational Cosmology L and the mean energy

Some Criteria for Short-listing the Cosmological Red-Shift s Explanations

Answers. The Universe. Year 10 Science Chapter 6

1. This question is about Hubble s law. The light received from many distant galaxies is red-shifted. (a) State the cause of this red-shift (1)

Numerical Experiments Using MATLAB: Superconvergence of Nonconforming Finite Element Approximation for Second-Order Elliptic Problems

Evaluation of Performance of Thermal and Electrical Hybrid Adsorption Chiller Cycles with Mechanical Booster Pumps

Estimates of the Enclosed Mass and its Distribution. for several Spiral Galaxies. Abstract

Physics of Galaxies 2016 Exercises with solutions batch I

Hubble s Law. Tully-Fisher relation. The redshift. λ λ0. Are there other ways to estimate distances? Yes.

Chapter 23: Dark Matter, Dark Energy & Future of the Universe. Galactic rotation curves

Hubble s Law and the Cosmic Distance Scale

Lecture Outlines. Chapter 26. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

Zero-energy space cancels the need for dark energy Tuomo Suntola

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Special Relativity: The laws of physics must be the same in all inertial reference frames.

What is a galaxy made of?

Dark Matter & Dark Energy. Astronomy 1101

Visit for more fantastic resources. Edexcel. A Level. A Level Physics. Astrophysics 2 (Answers) Name: Total Marks: /30

AU/Mpc km/au s 1 (2) = s 1 (3) n(t 0 ) = ɛ(t 0) mc 2 (7) m(h) = m p = kg (8)

Gravity. James H Dann, Ph.D. Say Thanks to the Authors Click (No sign in required)

Homework 6 Name: Due Date: June 9, 2008

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

The Extragalactic Distance Scale

Wiley Plus Reminder! Assignment 1

PhysicsAndMathsTutor.com 1

Examination, course FY2450 Astrophysics Wednesday 23 rd May, 2012 Time:

The Extragalactic Distance Scale

AST1100 Lecture Notes

Gravity as the cause for nuclear force and cosmological acceleration

Exam 4 Review EXAM COVERS LECTURES 22-29

Large Scale Structure

It is about 100,000 ly across, 2,000 ly thick, and our solar system is located 26,000 ly away from the center of the galaxy.

Control Rod Calibration and Worth Calculation for Optimized Power Reactor 1000 (OPR-1000) Using Core Simulator OPR1000

Nature of Black Holes and Space-Time around Them

LECTURE 1: Introduction to Galaxies. The Milky Way on a clear night

Astronomy A BEGINNER S GUIDE TO THE UNIVERSE EIGHTH EDITION

Chapter 1 Introduction. Particle Astrophysics & Cosmology SS

Astro-2: History of the Universe

Chapter 23 The Milky Way Galaxy Pearson Education, Inc.

The Influence of Abnormal Data on Relay Protection

ASTR 200 : Lecture 22 Structure of our Galaxy

Galaxies and Hubble s Law

Name Final Exam December 7, 2015

The Spin Angular Momentum. for the Celestial Objects

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Chapter 21 Evidence of the Big Bang. Expansion of the Universe. Big Bang Theory. Age of the Universe. Hubble s Law. Hubble s Law

THE UNIVERSITY OF SYDNEY FACULTY OF SCIENCE INTERMEDIATE PHYSICS PHYS 2913 ASTROPHYSICS AND RELATIVITY (ADVANCED) ALL QUESTIONS HAVE THE VALUE SHOWN

Type Ia Supernova Observations. Supernova Results:The Context. Supernova Results. Physics 121 December 4, fainter. brighter

Lecture PowerPoints. Chapter 33 Physics: Principles with Applications, 7 th edition Giancoli

Chapter 26: Cosmology

Clusters of Galaxies Groups: Clusters poor rich Superclusters:

Gravitation and Dark Matter

Circular Orbits for m << M; a planet and Star

Questions on Universe

Breaking Kepler's Law

Stellar Dynamics and Structure of Galaxies

Chapter 16 Dark Matter, Dark Energy, & The Fate of the Universe

Dark Side of the Universe: dark matter in the galaxy and cosmos

Fatal Flaw of Relativity

Astrophysics (Physics 489) Final Exam

Question Expected Answers Marks Additional Guidance 1 a static / homogeneous. B1 Uniform (density) A1 C1. ecf from H 0 value

Cosmology, Galaxies, and Stars OUR VISIBLE UNIVERSE

Normal Galaxies (Ch. 24) + Galaxies and Dark Matter (Ch. 25) Symbolically: E0.E7.. S0..Sa..Sb..Sc..Sd..Irr

An Efficient Algorithm for the Numerical Computation of the Complex Eigenpair of a Matrix

DOPPLER EFFECT FOR LIGHT DETECTING MOTION IN THE UNIVERSE HUBBLE S LAW

Dark Matter and Dark Energy components chapter 7

Transcription:

Journal of Modern Physics, 7, 8, 4-34 http://www.scirp.org/journal/jmp ISSN Online: 53-X ISSN Print: 53-96 Hubble s Constant and Flat Rotation Curves of Stars: Are ark Matter and Energy Needed? Alexandre Chaloum Elbeze University Pierre et Marie Curie, Paris, France How to cite this paper: Elbeze, A.C. (7) Hubble s Constant and Flat Rotation Curves of Stars: Are ark Matter and Energy Needed? Journal of Modern Physics, 8, 4-34. http://dx.doi.org/.436/jmp.7.83 Received: October 9, 6 Accepted: January, 7 Published: January 4, 7 Copyright 7 by author and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.). http://creativecommons.org/licenses/by/4./ Open Access Abstract Although dark energy and dark matter have not yet been detected, they are believed to comprise the majority of the universe. Observations of the flat rotation curve of galaxies may be explained by dark matter and dark energy. This article, using s laws and Einstein s theory of gravitation, shows that it is possible to define a new term, called E, variable in time and space, of which one of its limits is the Hubble constant H. I show that E is strongly linked to an explanation of the flat rotation curve of galaxies. This strong correlation between Hubble s constant H and E enables us to solve the mystery of the surplus of gravity that is stabilizing the universe. Keywords Hubble s Law, General Relativity, Cosmological Constant, Expanding Universe, ark Energy. Introduction Galaxies appear to rotate more quickly than allowed by the gravity of its observable matter. Logically, they should have been destroyed a long time ago, as should galaxy clusters. Because of this disagreement between theory and observations, some undetectable element is believed to be providing galaxies with the additional mass that they need to avoid breaking up. This mysterious element has been called dark matter. Over the years, coherent theories on dark matter and dark energy have been formulated to explain the stability of galactic systems. Attempts have been made to modify s laws of gravity, for example, Milgrom s MON theory [], which explains rather well the flat rotation curves of stars for many galaxies. However, these theories have not yet offered a sufficiently well explained source; they are rather empirical theories. In this article, using s laws and Einstein s theory of general relativity [], I show that a coherent theory is possible that can explain, at the same time, flat rotation curves, OI:.436/jmp.7.83 January 4, 7

the expansion of the universe, and the acceleration of the expansion. I will define a new term, E, one limit of which is the Hubble constant, and I clearly show its relationship with the flat rotation curves of galaxies. This new term E is universal because it applies without restriction to all celestial bodies.. Hubble s Constant and efining the New Term E H The Hubble constant H is the constant of proportionality between the distance and speed of apparent recession of galaxies relative to any point in the observable universe. It is connected to the famous Hubble s law, which describes the expansion of the universe. Although erred to as a constant, H actually varies depending on time and distance. It thus describes the growth rate of the universe at one moment and at a given distance from the point of observation. The most precise value of H (from optical observations, May ) is 7 ± 8 km s Mpc. However, the current definition of H does not relate expansion of the universe to the flat rotation curves of galaxies and galaxy clusters. I must thus extend the concept of expansion of the universe to a comparison of the gravitational acceleration for small and large distances. Thus ian acceleration can be written as for small distances (less than kpc), and and (for distances greater than kpc) are the acceleration and distance, respectively, between gravitationally interacting masses. We can theore write the following relationship for a galactic system in gravitational balance: V = () where V is the speed of rotation. Einstein s relativity theory may also be applied to ian gravitational acceleration so that the masses vary as M and the distances in the moving erence frame (for the observer) shorten v c according to d v. In fact, s second law in relativistic mechanics (special c relativity) may be applicable in my calculations. Here, v represents the radial velocity between two gravitationally interacting objects (not to be confused with the rotation speed V of planets, stars, galaxies, and galaxy clusters around the center of their respective system). This radial velocity v can also be regarded as the recessional velocity of the object of interest (galaxies, stars, planets) similar to the relationship H, where H is the Hubble constant and is the distance. On the other hand, I take into account the relativistic function of acceleration developed by Elbeze [3] [4], in which I include the recessional rate of the universe defined by function E (added at the possible radial speed v ), which will be defined below (and is equivalent to the Hubble expression H ), and obtain: G M G M = and V = ( ) ( ) v + Eo c v + Eo c () 5

From these relationships, I can define a rate of variation of acceleration the ian acceleration (for all distances) and the acceleration as follows: τ = τ between I can compare Equation (3) with the Hubble constant H as follows: τ V = E H (4) where E is the equivalent of H in this article, and V is the erence radial velocity, which I will define below. By replacing accelerations and with their equivalent in speed and distance in Equations (), (), (3), and (4), so that radial velocity is negligible in calculating the rate E, while applying the relativistic principle for distance and masses in radial motion (defined above and according to s second law in special relativity to a radial dimension along ), and with ( ( ) ) E c β =, I obtain: V β G Mgalaxy V = E β G Mgalaxy where E is the recessional speed of mass M from mass M (Figure ). Here, is the distance between masses M and M, their relative speed v (radial velocity) is negligible, and V is the speed of rotation of M around mass M. Solving Equation (4) and Equation (5) for E gives two universal solutions: 4 V V c V c E = ± c + (6) V V V V V We can already assume that M and the gravitational constant G (from equation ) V disappear from Equation (6), because they are factors in the elements com- V posing it. Only speeds V and V, distance, and the erence speed V, which will be defined low, are present in Equation (6). Thus Equation (6) is universal, independent of M and M, and applies to all points in the universe with no distinctions. Let us write the recessional velocities ve and vh as follows: (3) (5) Figure. Measurement of the proposed recessional rate E for coupled masses M and M. 6

ve = E vh = H (7) 3. Relationship between E and H and the Flat Rotation Curves of Galaxies One possible solution for the speed of rotation V, which solves Equation (6), is: G M g V = VE = Λ Wpe + ( v E ) c rh + where is the acceleration of the expansion of the universe (which is here regarded as small compared with gravitational acceleration for distances < Mpc); G is s gravitational constant; M g is the mass of the planet, star, galaxy, or galaxy cluster; and v are the distance and relative radial speed, respectively, between masses M and M (Figure ); E is the recessional velocity of the object of interest; rh is the atomic radius of hydrogen; and the two functions Λ (value between and ) and 3 Wpe, which is on the order of depending on the nature of the celestial body (e.g., galaxy, star), are defined in Appendix and Appendix, respectively. By replacing G M V = VE (Equation (8)) in Equation (6), the term v+ E c ( ) from Equation (8) (which defines the ian part of VE ) disappears before the V factors, so that with V then Equation (5) becomes ( ) a = Λ Wpe + rh 4 c c E = ± c a( ) + a( ) a( ) V V I can apply Equation (8) (e.g., to our galaxy) in the case of gravitational balance of the Milky Way, and assume the acceleration of the expansion of the universe to be equal to (defined low), here is the acceleration in ms, we obtain the Figures -4. In Figure, the position of our Sun is at approximately 8. kpc and its speed is 3 km s. The speed returns to its ian form to.5 Mpc. In my calculations, only the mass of the bulb is considered; I do not take account of the mass of the galactic gas clouds, which in any case do not influence the effective existence of the flat rotation curves of the galaxy, but modify only the form of the curve speeds. I apply Equation (9) to define E (the proposed new expansion rate) in relation to the Hubble constant H (Hubble expansion rate) (Figure 3). Figure 3 shows four terms: νe and ν H, the proposed expansion rate ( E ), and the Hubble constant ( H ). Values of E and H are given in units of km s /Mpc; in this article, H is equal to 73. ±.75 km s /Mpc for a distance of Mpc [5] (8) (9) 7

Figure. Flat velocity curve of the Milky way galaxy. Figure 3. Relationship between the Hubble constant and E. Figure 4. Acceleration of a celestial body of mass M g and acceleration of expansion of the universe. 8

[6], and E for a large distance ( Mpc 5 Mpc ) is equal to 73.36 ±. km s /Mpc. I stated the position of the Sun in the Milky Way, which is approximately equal to 8.6 pc (.68 Gpc) from the galactic center, with a rotation speed of 3 km s 6 and an expansion rate of.68 c =.65 km s. In Figure 3, we can see the difference between H and E. For H, the speed ν H represents a straight line with a fixed slope, whereas for E, the slope is variable all along distance. At large distances, the expansion rate ν E is positive (repulsion, i.e., galaxies move apart) and tends toward the speed of light c (thus conforming to Einstein s relativity theory); at a smaller distance it becomes negative (attraction) and almost constant, for part of the curve after the reversal since the distance.5 kpc kpc. This part of the curve is at small distances less than.5 kpc, particularly regarding the solar system and its planets for which the expansion function E also applies. I can also plot the curve of the acceleration of the expansion of the universe, taking the derivative of E with respect to time as ( E ) d E = d where d = V dt = E dt (Figure 4). In Figure 4, we can see three areas of acceleration: a zone from to.5 pc where 6 there is a constant rate of negative expansion (of m s, attraction); a zone between.5 pc and Gpc where there is an accelerated rate of positive expansion (repulsion); and a zone between Gpc and above 3 Tpc where there is a decelerated rate of expansion (always repulsive). Finally, the acceleration produced by the expansion of the universe is much less than the acceleration M g produced by mass M g up to the value of.9 Mpc for the Milky Way, and is negligible for our solar system. It seems that beyond.9 Mpc, other celestial bodies cannot be orbiting the Milky Way! 4. efinition of the Value of the Speed of Reference V in Our Solar System I can rewrite an approximation of Equation (8) by neglecting the acceleration of the universe for the Earth (Figure 4) and by setting v = as follows (here for our solar system): G Mg V = VE = Vearth = Λ Wpe + E rh c () This erence speed V will be calculated at the level of our solar system. This has two principal advantages: we know the precise Earth-Sun distance, and the flat expansion velocities are relatively stable (here attractive to the Sun; see Figure 3). Using universal Equations (8), (9), and (), which also apply to our solar system, I deduce the value of V = V, depending on the position and speed of rotation of the Earth around the Sun ( = Rearth-sun and Vearth = VE, respectively). By comparing the value of E, which is given by Equation (), with the value in Equation (9), I get: 9

Vearth Λ Wpr + G Mg rh V = c Y Λ Wpr + rh In this relationship the value of Y is obtained by replacing the value of V in Equation (9) by Y E. Indeed, the V value is similar at the speed of expansion of the universe, and this fact answers the classical formula of Hubble. The function Y is a constant dependent on the zone of space considered. For a distance (about the distances of the solar system) Y. Finally, the calculation of V in the solar system gives V 83.644 m s =. To obtain this value, I have to check the equation where V = Y E (Figure 5). V ( V ) V = The term ( n ) 5 n depends on the nature of the star, galaxy, or planet in question; here for our solar system n =.455388 and n =, and for the Milky Way n = and n =. The values of n and no define the function Λ. Thus, the erence speed V will have a value dependent on the nature of the considered system, or: For the solar system: V ( Sun) In the Milky Way galaxy: 5 n V = V with V =.7 m s n ( =.455388) n ( = ) 5 n = V = 83.644 m s 5 n( = ) V = V =.7 m s. n ( = ) V V = nn Thus, V is a universal speed of erence for all gravitational systems. This value V is thus directly related to the value of the expansion rate of the universe E, as well as to the flat rotation curves of galaxies. Figure 6 shows the point where the distance of the Sun from the center of the Milky Way and the ratio ( ) 5. () () Figure 5. Ratio V V. 3

Figure 6. istance from Sun to center of Milky Way for V V =. V coincide. This equality requires the conditions V the center of the Milky Way equal to 8.6 kpc. 5. Conclusion ( V ) = for n = n and sun to I have shown in this article that it is possible to link the concept of expansion of the universe through a new term E (which is comparable to the Hubble constant H ), and the flat rotation curves of galaxies, with one limit according to galactic mass. For the Milky Way, the limit (end of the non-ian rotation curves) is around.9 Mpc. This is possible using both the widely accepted gravitational theories of and Einstein. I suggest a solution (Equations (8) and ()) for the expression of the flat rotation speed of galaxies (or other galactic objects) which is derived from the universal relation of expansion of the universe E (Equation (9)). This solution gives excellent results. The first and second derivatives of the value of E (Equation (6)) are a function of time, and show that the universe is in acceleration until about 3 Mpc, then in deceleration until approximately 3 Tpc. This is new information about the universe. Thus, we can legitimately ask whether dark matter is necessary to explain the flat rotation curves of galaxies? And because of this accelerating expansion, could it be that dark energy does not exist? In this article, I have shown that the basic concept of the expansion of the universe also applies to the solar system like with planets and their satellites. Based on this, the Hubble constant H and of Elbeze E could be with more accuracy. The results presented in this article may solve some current issues such as the energy density of galaxies, their masses, and may help to solve the mystery of the formation of the universe and the presence of filaments of material connecting the clusters and super clusters of galaxies of the current standard model, all without the need to involve hypothetical dark matter and dark energy. References [] Milgrom, M. (983) Astrophysical Journal, 7, 365-37. https://doi.org/.86/63 3

[] Einstein, E. (95) The Meaning of Relativity. Princeton University Press, Princeton. [3] Elbeze, A.C. () Earth, Moon, and Planets, 8, 5-63. https://doi.org/.7/s38--9388-9 [4] Elbeze, A.C. (3) SpringerPlus,, 53. https://doi.org/.86/93-8--53 [5] Wendy, L., et al. (994) Nature, 37, 757-76. https://doi.org/.38/37757a [6] Riess, A.G., et al. (6) A.4% etermination of the Local Value of the Hubble Constant. arxiv:64.44. [7] Elbeze (5) New Atomic Physics (NAP). 3

Appendix : Calculation of Λ Let n = n =, a relative coefficient taken as a erence for our galaxy, the Milky Way. Any other object in the universe will also have a number n that varies according to the object s characteristics such as its mass distribution, its linear density σ, and the shape of its flat rotation curves. For the Sun n =.455388. In this article, the distribution of the masses is comparable to that of a thin disk (the spherical distribution does not change the final results) of apparent mass equal to M : r R M = πr σ e dr (A.) where is the distance from the center of the object of interest (e.g., galaxy, star) and R is the radius of the central core, where for a galactic disk such as that of the Milky Way, R is generally taken as equal to.5 kpc, for the sun and the earth their radius. The density σ is equal to σ = Mass of the body kpc. M The value of Λ is defined as Λ=, where M is the hidden value of the M galactic mass near to its actual value for the distance being considered. Let this mass be equal to I define the coefficients r β R π ασ e d. M = r r (A.) α and β as being equal to 3 a n = here a =.3 and β = α n n M and finally obtain Λ as a function of distance : Λ=. M Appendix : Calculation of Wpe (A.3) In this article, the value of Wpe for our purposes is Wpe rh, rh, Ep = 5.4. (A.) ( ) 3 Here, Wpe is a function of at least three parameters: rh is the atomic radius of hydrogen; rh = rh n is the average atomic radius in the galaxy (or other object of interest) in terms of the orbital radius of hydrogen, where n is defined in Appendix ; and Ep is the electron rest energy. The relationship giving Wpe is written as follows: Wpe = ze zp ze = E p xp + E e xe + Ee zp = E p xp + E e xe + Ep 3 3 λe rh λp rh xe = xp = Γ e rh Γ p rh 33

The value ( E p xp E e xe) + is always very small compared with Ep and Ee (proton and electron rest energy), and we can write: ( E p xp + E e xe) ( Ee Ep ) Wpe = (A.) ze zp Ee Ep where Ee and Ep are the electron and proton rest energies, respectively; λ p are modified wavelengths of the electron and the proton; Γ e, E e and λ e and Γ p, E p are the radial and volumetric interaction energy between the electron and the proton in the hydrogen atom. These values define the volume and the binding energy of the electromagnetic reaction between the electron and the proton, and ze and zp are the energy charge (similar to electric charge) of the proton and electron in the hydrogen atom as follow table: Energy of electron and proton λ e and λ p Γ e and Γ p E e and E p Ee = 8.87 4 J 5.8 m 3 7.3 m 3.76 J Ep.538 J 8 =.53 m 4.7 m 8.86 J By using the values in table, we obtain a value for our galaxy the Milky Way of 3 Wpe = 5.4. For a more detailed explanation of these values, the reader may wish to er to the book by Elbeze [7]. In fact, for a first reading of this appendix, we can neglect the values of the above table and consider only the value of Wpe = 5.4 as being a constant of 3 integration. Submit or recommend next manuscript to SCIRP and we will provide best service for you: Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc. A wide selection of journals (inclusive of 9 subjects, more than journals) Providing 4-hour high-quality service User-friendly online submission system Fair and swift peer-review system Efficient typesetting and proofreading procedure isplay of the result of downloads and visits, as well as the number of cited articles Maximum dissemination of your research work Submit your manuscript at: http://papersubmission.scirp.org/ Or contact jmp@scirp.org 34