Main Goal I basic concepts of automata and process theory regular languages

Similar documents
AC68 FINITE AUTOMATA & FORMULA LANGUAGES DEC 2013

The Pumping Lemma (cont.) 2IT70 Finite Automata and Process Theory

Finite Automata. Human-aware Robo.cs. 2017/08/22 Chapter 1.1 in Sipser

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Intro to Theory of Computation

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

Turing Machines. Human-aware Robotics. 2017/10/17 & 19 Chapter 3.2 & 3.3 in Sipser Ø Announcement:

More Properties of Regular Languages

St.MARTIN S ENGINEERING COLLEGE Dhulapally, Secunderabad

CSE 105 THEORY OF COMPUTATION

Pushdown Automata. Reading: Chapter 6

6.8 The Post Correspondence Problem

1. Provide two valid strings in the languages described by each of the following regular expressions, with alphabet Σ = {0,1,2}.

Theory of Computation

What languages are Turing-decidable? What languages are not Turing-decidable? Is there a language that isn t even Turingrecognizable?

CS 301. Lecture 18 Decidable languages. Stephen Checkoway. April 2, 2018

CSE 105 THEORY OF COMPUTATION

60-354, Theory of Computation Fall Asish Mukhopadhyay School of Computer Science University of Windsor

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Computational Models - Lecture 5 1

CS 154, Lecture 2: Finite Automata, Closure Properties Nondeterminism,

(pp ) PDAs and CFGs (Sec. 2.2)

Finite Automata Theory and Formal Languages TMV026/TMV027/DIT321 Responsible: Ana Bove

Introduction to the Theory of Computation. Automata 1VO + 1PS. Lecturer: Dr. Ana Sokolova.

Reducability. Sipser, pages

Theoretical Computer Science

Chapter 6: NFA Applications

Finite Universes. L is a fixed-length language if it has length n for some

CS F-15 Undecidiability 1

INSTITUTE OF AERONAUTICAL ENGINEERING

AC68 FINITE AUTOMATA & FORMULA LANGUAGES JUNE 2014

CPS 220 Theory of Computation Pushdown Automata (PDA)

Theory Bridge Exam Example Questions

Decidable and undecidable languages

Einführung in die Computerlinguistik

Mapping Reducibility. Human-aware Robotics. 2017/11/16 Chapter 5.3 in Sipser Ø Announcement:

Parsing Regular Expressions and Regular Grammars

Let P(n) be a statement about a non-negative integer n. Then the principle of mathematical induction is that P(n) follows from

Exam 1 CSU 390 Theory of Computation Fall 2007

Automata Theory CS F-04 Non-Determinisitic Finite Automata

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Lecture 11 Context-Free Languages

VTU QUESTION BANK. Unit 1. Introduction to Finite Automata. 1. Obtain DFAs to accept strings of a s and b s having exactly one a.

CSCI 2200 Foundations of Computer Science Spring 2018 Quiz 3 (May 2, 2018) SOLUTIONS

CSE 105 Homework 1 Due: Monday October 9, Instructions. should be on each page of the submission.

CSE 105 THEORY OF COMPUTATION. Spring 2018 review class

Deterministic Finite Automata. Non deterministic finite automata. Non-Deterministic Finite Automata (NFA) Non-Deterministic Finite Automata (NFA)

Nondeterministic Finite Automata

Midterm Exam 2 CS 341: Foundations of Computer Science II Fall 2018, face-to-face day section Prof. Marvin K. Nakayama

FORMAL LANGUAGES, AUTOMATA AND COMPUTABILITY

What is this course about?

THEORY OF COMPUTATION (AUBER) EXAM CRIB SHEET

Fall, 2017 CIS 262. Automata, Computability and Complexity Jean Gallier Solutions of the Practice Final Exam

Formal Languages and Automata

1. (a) Explain the procedure to convert Context Free Grammar to Push Down Automata.

CS375 Midterm Exam Solution Set (Fall 2017)

(pp ) PDAs and CFGs (Sec. 2.2)

Pushdown automata. Twan van Laarhoven. Institute for Computing and Information Sciences Intelligent Systems Radboud University Nijmegen

CS Automata, Computability and Formal Languages

Chap. 4,5 Review. Algorithms created in proofs from prior chapters

Chapter 3: Cluster Analysis

The Post Correspondence Problem; Applications to Undecidability Results

CSE 105 THEORY OF COMPUTATION

2.1 Solution. E T F a. E E + T T + T F + T a + T a + F a + a

Intro to Theory of Computation

Context Free Languages. Automata Theory and Formal Grammars: Lecture 6. Languages That Are Not Regular. Non-Regular Languages

CSE 311: Foundations of Computing. Lecture 23: Finite State Machine Minimization & NFAs

ECS 120: Theory of Computation UC Davis Phillip Rogaway February 16, Midterm Exam

CSE 105 THEORY OF COMPUTATION

GEETANJALI INSTITUTE OF TECHNICAL STUDIES, UDAIPUR I

Chomsky Normal Form and TURING MACHINES. TUESDAY Feb 4

Foundations of Informatics: a Bridging Course

CDM Parsing and Decidability

Intro to Theory of Computation

Regents Chemistry Period Unit 3: Atomic Structure. Unit 3 Vocabulary..Due: Test Day

CSE 105 THEORY OF COMPUTATION

Section 14.1 Computability then else

CSE 355 Homework Two Solutions

CpSc 421 Final Exam December 15, 2006

Application Of Mealy Machine And Recurrence Relations In Cryptography

Recap from Last Time

The machines in the exercise work as follows:

Solution Scoring: SD Reg exp.: a(a

Foreword. Grammatical inference. Examples of sequences. Sources. Example of problems expressed by sequences Switching the light

Lecture 17: Language Recognition

Section 1 (closed-book) Total points 30

Note: In any grammar here, the meaning and usage of P (productions) is equivalent to R (rules).

Context Free Languages (CFL) Language Recognizer A device that accepts valid strings. The FA are formalized types of language recognizer.

V Honors Theory of Computation

Context-Free Grammars. 2IT70 Finite Automata and Process Theory

COMP/MATH 300 Topics for Spring 2017 June 5, Review and Regular Languages

NODIA AND COMPANY. GATE SOLVED PAPER Computer Science Engineering Theory of Computation. Copyright By NODIA & COMPANY

Functions on languages:

An automaton with a finite number of states is called a Finite Automaton (FA) or Finite State Machine (FSM).

5/10/16. Grammar. Automata and Languages. Today s Topics. Grammars Definition A grammar G is defined as G = (V, T, P, S) where:

Theory of Computation Turing Machine and Pushdown Automata

acs-07: Decidability Decidability Andreas Karwath und Malte Helmert Informatik Theorie II (A) WS2009/10

CS 154. Finite Automata, Nondeterminism, Regular Expressions

Push-Down Automata and Context-Free Languages

Transcription:

Cure verview Main Gal I baic cncept f autmata and prce thery regular language determinitic finite autmatn DFA nn-determinitic finite autmatn NFA regular exprein finite memry cntext-free language puh-dwn autmatn PDA cntext-free grammar CFG pare tree recurive enumerable language reactive Turing machine rtm claical Turing machine ctm unretricted grammar elf-reference and circularity

Cure verview (cnt.) Main Gal II mathematical prf and frmal reaning tutr grup hift t prf at final exam n cheduled tuitin n exercie examinatin interim tet n Chapter 2 (20%) prgramming aignment: Turing machine prgram (20%) participatin tutr grup (10%) final exam (50%) plan learning activitie with peer tudent

Mathematical inductin fr each prperty P N and natural number n,k 0: ( P(0) k N: P(k) = P(k +1) ) = n N: P(n) bai P(0) inductin tep P(n+1) inductin hypthei P(n) r k, 0 k n: P(k) thi cure: natural number; in general: well-funded tructure n N: 1+3+5+...+(2n 1) = n 2 fr all n 0, if x 1,x 2,...,x n > 0 then (x 1 x 2... x n ) 1/n (x 1 +x 2 +...+x n )/n 3 n 1 i even

Structural inductin (fr tring) fr each prperty P Σ and natural number n,k 0: ( P(ε) a Σ, w Σ : P(w) = P(aw) ) = w Σ : P(w) bai P(ε) inductin tep P(aw) inductin hypthei P(w)

A play f tenni game, et, match lve, 15, 30, 40, game winning al require at leat tw cre mre deuce, advantage-in, advantage-ut

A tenni autmatn lve 15-lve lve-15 30-lve 15-all lve-30 40-lve 30-15 15-30 lve-40 game-in game-ut 40-15 30-all 15-40 40-30 30-40 deuce adv-in adv-ut

A tenni autmatn (cnt.) lve 15-lve lve-15 30-lve 15-all lve-30 40-lve 30-15 15-30 lve-40 40-15 30-all 15-40 game-in 40-30 30-40 game-ut adv-in deuce adv-ut ingle initial tate ne r mre final tate many labeled tranitin

A tenni autmatn (cnt.) lve 15-lve lve-15 30-lve 15-all lve-30 40-lve 30-15 15-30 lve-40 40-15 30-all 15-40 game-in 40-30 30-40 game-ut adv-in deuce adv-ut accepted tring like and

Clicker quetin 1 Which tring i nt accepted by the tenni autmatn? A. B. C. lve 15-lve lve-15 30-lve 15-all lve-30 40-lve 30-15 15-30 lve-40 40-15 30-all 15-40 game-in 40-30 30-40 game-ut adv-in deuce adv-ut D. all are accepted

Determinitic Finite Autmata 2IT70 Finite Autmata and Prce Thery Techniche Univeriteit Eindhven April 18, 2016

Determinitic finite autmatn DFA D = (Q, Σ, δ, q 0, F) Q finite et f tate Σ finite alphabet δ : Q Σ Q tranitin functin q 0 Q initial tate F Q et f final tate 2IT70 (2016) Sectin 2.1 11/22

The tenni example lve 15-lve lve-15 30-lve 15-all lve-30 40-lve 30-15 15-30 lve-40 40-15 30-all 15-40 game-in 40-30 30-40 game-ut adv-in deuce adv-ut 2IT70 (2016) Sectin 2.1 12/22

The tenni example (cnt.) lve 15-lve lve-15 30-lve 15-all lve-30 40-lve 30-15 15-30 lve-40 40-15 30-all 15-40 game-in 40-30 30-40 game-ut adv-in deuce adv-ut et f tate {lve, 15 lve, lve 15,... } game-in, game-ut, deuce, adv-in, adv-ut} alphabet {, } tranitin lve 15 lve, lve lve 15,... initial tate lve et f final tate {game-in, game-ut} 2IT70 (2016) Sectin 2.1 13/22

Clicker quetin 3 Why de the fllwing nt repreent a DFA? 1 2 3 q 0 0 q 0 1 q 2 A. The alphabet ha mre than 2 letter. B. It accept the empty tring ε. C. It ha a tranitin relatin, but nt a tranitin functin. D. It de repreent a DFA. 2IT70 (2016) Sectin 2.1 14/22

ne-tep and multi-tep yield cnfiguratin (q,w) fr tate q and tring w ne-tep yield (q,w) D (q,w ) iff a: w = aw, δ(q,a) = q multi-tep yield (q,w) D (q,w ) iff n 0 w 0,...,w n Σ q 0,...,q n Q : (q,w) = (q 0,w 0 ), (q i 1,w i 1 ) D (q i,w i ), fr i = 1..n (q n,w n ) = (q,w ) (q,w) = (q 0,w 0 ) D (q 1,w 1 ) D D (q n,w n ) = (q,w ) fr uitable n, w 0,...,w n, q 0,...,q n 2IT70 (2016) Sectin 2.1 15/22

Anther example DFA b a a,b a q 0 q a 1 q b 2 q 3 b (q 0,abaa) (q 1,baa) (q 0,aa) (q 1,a) (q 2,ε) (q 0,bbaa) (q 0,baa) (q 0,aa) (q 1,a) (q 2,ε) (q 1,aa) (q 2,ε) and (q 1,aaaa) (q 2,ε) (q 0,aab) (q 3,ε), (q 0,baab) (q 3,ε), and (q 0,baaaabaabb) (q 3,ε) 2IT70 (2016) Sectin 2.1 16/22

Language accepted by DFA L(D) = {w Σ q F: (q 0,w) D (q,ε)} b a a,b a q 0 q a 1 q b 2 q 3 b accepted language {w {a,b} w ha a ubtring aab} 2IT70 (2016) Sectin 2.1 17/22

Clicker quetin 2 Which language i the language accepted by thi autmatn? ee a a e b b b b a e a A. {a,b,aba,bab} B. {a(bb) n n 0} {b(aa) n n 0} C. {w {a,b} # a (w) i dd} D. {w {a,b} # a (w)+# b (w) i dd} 2IT70 (2016) Sectin 2.1 18/22

Path et DFA D, tate q pathet D (q) = {w Σ (q 0,w) D (q,ε)} even a a dd pathet D (even) = {a n n 0, n even} pathet D (dd) = {a n n 0, n dd} 2IT70 (2016) Sectin 2.1 19/22

Yet anther example DFA 0 0,1 q 0 1 q 1 1 q 2 0 L = {w {0,1} w ha n ubtring 11} tate pathet regular exprein q 0 n ubtring 11 and n lat ymbl 1 0 (10 + ) q 1 n ubtring 11 and lat ymbl 1 0 (10 + ) 1 q 2 ubtring 11 (0+1) 11(0+1) regular exprein will be explained later 2IT70 (2016) Sectin 2.1 20/22

Anther example DFA (rev.) ee a e tate pathet a ee {w # a (w) even, # b (w) even} b b b b e {w # a (w) dd, # b (w) even} a e {w # a (w) even, # b (w) dd} e a {w # a (w) dd, # b (w) dd} L(D) = pathet D (e) pathet D (e) = {w # a (w) dd, # b (w) even} {w # a (w) even, # b (w) dd} = {w # a (w)+# b (w) dd} = {w w dd} 2IT70 (2016) Sectin 2.1 21/22

Language accepted by DFA (reviited) b a a,b a q 0 q a 1 q b 2 q 3 b tate pathet q 0 {w n ubtring aa, nt ending in a} q 1 {w n ubtring aa, ending in a} q 2 {w ending in aa} q 3 {w ubtring aab } accepted language {w {a,b} w ha a ubtring aab } 2IT70 (2016) Sectin 2.1 22/22