CVD diamonds for fast neutron detection and spectroscopy in high flux environment

Similar documents
Charge transport properties. of heavily irradiated

CVD Diamond History Introduction to DDL Properties of Diamond DDL Proprietary Contact Technology Detector Applications BDD Sensors

Fabio Schirru, Chiara Nociforo

Epitaxial SiC Schottky barriers for radiation and particle detection

Berdermann, GSI Darmstadt. Helmholtz Zentrum für Schwerionenforschung

GaN for use in harsh radiation environments

Fast Polycrystalline-CdTe Detector for LHC Luminosity Measurements

Diamond (Radiation) Detectors Are Forever! Harris Kagan

Flux and neutron spectrum measurements in fast neutron irradiation experiments

Review of Semiconductor Drift Detectors

Pulse-shape shape analysis with a Broad-energy. Ge-detector. Marik Schönert. MPI für f r Kernphysik Heidelberg

Neutron Induced Nuclear Counter Effect in Hamamatsu Silicon APDs and PIN Diodes

BEGe Detector studies update

Status Report: Charge Cloud Explosion

First Applications of CVD-Diamond Detectors in Heavy-ion Experiments

High-Resolution Gamma-Ray and Neutron Detectors For Nuclear Spectroscopy

Measurement of the Ionizing Energy Depositions after Fast Neutron Interactions in Silicon

Module of Silicon Photomultipliers as a single photon detector of Cherenkov photons

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

PoS(TIPP2014)088. Diamonds for beam instrumentation. Erich Griesmayer 1. Pavel Kavrigin

Measurement of the n_tof beam profile in the second experimental area (EAR2) using a silicon detector

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors

Outline. Introduction, motivation Readout electronics, Peltier cooling Input J-FETsJ

Theory and practice of Materials Analysis for Microelectronics with a nuclear microprobe

Novel Plastic Microchannel-Based Direct Fast Neutron Detection

R&D on µ-lom monitors for High intensity Linacs like LIPAc

Reconstruction in Collider Experiments (Part IV)

Alpha-Gamma discrimination by Pulse Shape in LaBr 3 :Ce and LaCl 3 :Ce

Development of a Radiation Hard CMOS Monolithic Pixel Sensor

1.5 TeV Muon Collider background rejection in ILCroot Si VXD and Tracker (summary report)

Fcal sensors & electronics

Semiconductor X-Ray Detectors. Tobias Eggert Ketek GmbH

A RICH Photon Detector Module with G-APDs

Timing and cross-talk properties of BURLE multi-channel MCP-PMTs

5 th ASRC International Workshop, 14 th -16 th March 2012

physics/ Sep 1997

Timing resolution measurement of a 3 Lanthanum Bromide detector

Performance of high pressure Xe/TMA in GEMs for neutron and X-ray detection

Radiation damage in diamond sensors at the CMS experiment of the LHC

M. De Napoli, F. Giacoppo, G. Raciti, E. Rapisarda, C. Sfienti. Laboratori Nazionali del Sud (LNS) INFN University of Catania. IPRD Oct.

ORTEC. Review of the Physics of Semiconductor Detectors. Interaction of Ionizing Radiation with Semiconductor Detectors. Heavy Charged Particles

High Purity Germanium Detector Calibration at ISOLDE

Silicon Detectors. Particle Physics

Radiation hardness of Low Gain Amplification Detectors (LGAD)

Lecture 2. Introduction to semiconductors Structures and characteristics in semiconductors. Fabrication of semiconductor sensor

arxiv:physics/ v2 [physics.ins-det] 22 Nov 2005

Investigation of a Cs137 and Ba133 runs. Michael Dugger and Robert Lee

Triplet polarimeter study

Impact of high photon densities on AGIPD requirements

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

arxiv: v2 [physics.ins-det] 8 Feb 2013

Precision neutron flux measurement with a neutron beam monitor

D. Meier. representing the RD42 Collaboration. Bristol University, CERN, CPP Marseille, Lawrence Livermore National Lab, LEPSI

The NArCos project (Neutron ARray for Correlation Studies)

AGATA preamplifier performance on large signals from a 241 Am+Be source. F. Zocca, A. Pullia, D. Bazzacco, G. Pascovici

LASER MICRO-MACHINING FOR 3D DIAMOND DETECTORS APPLICATIONS

A new detector for neutron beam monitoring

Impact of high photon densities on AGIPD requirements

Photofission of 238-U Nuclei

Preparatory experiments for cold-neutron induced fission studies at IKI

Preliminary measurements of charge collection and DLTS analysis of p + /n junction SiC detectors and simulations of Schottky diodes

DETECTORS. I. Charged Particle Detectors

The ANGRA Cherenkov detector

Test Simulation of Neutron Damage to Electronic Components using Accelerator Facilities

Tests of the BURLE 64-anode MCP PMT as the detector of Cherenkov photons

VERDI a double (v, E) fission-fragment fragment spectrometer

Silicon Detectors in High Energy Physics

Semiconductor Detectors

Der Silizium Recoil Detektor für HERMES Ingrid-Maria Gregor

Germanium Detectors. Germanium, a special material. Detectors, big is beautiful. Operational features. Applications. Iris Abt

Research Center Dresden Rossendorf

arxiv: v1 [physics.ins-det] 25 May 2017

Modelling of Diamond Devices with TCAD Tools

Semiconductor-Detectors

Feasibility of a new polarized active detector for low-energy ν

Abstract: J. Urbar [1], J. Scheirich [2], J. Jakubek [3] MEDIPIX CR tracking device flown on ESA BEXUS-7 stratospheric balloon flight

Semiconductor Detectors

Non-traditional methods of material properties and defect parameters measurement

Detection of γ-rays from nuclear decay: 0.1 < E γ < 20 MeV

SINGLE CRYSTAL CVD DIAMOND MEMBRANE MICRODOSIMETERS FOR HADRON THERAPY. ADAMAS2017 Zagreb 28/11/2017 Pomorski Michal

Tracking Detector Material Issues for the slhc

Development of Radiation Hard Si Detectors

Precision Measurement Of Nuclear Recoil Ionization Yields For Low Mass Wimp Searches

Photosynthesis & Solar Power Harvesting

Neutron Instruments I & II. Ken Andersen ESS Instruments Division

Characterization and Monte Carlo simulations for a CLYC detector

Diagnostic Capabilities of Line-Integrated Neutron Pulse Height Spectra Measurements

Radioactivity at the limits of nuclear existence

Solid State Detectors

EEE4106Z Radiation Interactions & Detection

Week 4: Chap. 4 Basic Detector Principles

JRC Place on dd Month YYYY Event Name 1

The Hermes Recoil Silicon Detector

Time-of-Flight PET using Cherenkov Photons Produced in PbF 2

Unfolding of neutron spectra with an experimentally determined diamond detector response function

arxiv: v1 [physics.ins-det] 29 Jun 2011

He-3 Neutron Detectors

Performance test of triple GEM detector at CERN n_tof facility

The Compact Muon Solenoid Experiment. Conference Report. Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Summary of readout test of DSG prototype with IPA4 cold preamp. C. Cattadori, M. Bernabe-Heider, O. Chkvorets, K. Gusev, M.

Transcription:

M. Osipenko INFN 2 Dicember 203 INFN-E/RILF * Introduction ToF Experiment Conclusion * CVD diamonds for fast neutron detection and spectroscopy in high flux environment INFN-E/RILF M.Osipenko etal.,m.pillon 2 etal.,r.cardarelli 3 etal., G.VeronaRinati 3 etal. INFNGenova, 2 ENEAdiFrascati, 3 UniversitàdiTorVergata HeRe in Italy,Frascati, 203

2 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF * Introduction ToF Experiment Conclusion * Motivation φ n cm -2 s - 2 9 8 7 6 5 4 3 2 Goal: to monitor neutron spectrum inside reactor core. Solution: single crystal CVD diamond detectors. Fast Reactor neutron flux -8-7 -6-5 -4-3 -2 - T n MeV Advantages: 0 µmcrystalwilllastfor severalyearsat 9 n/cm 2 /s, fast signals good for background rejection, compact detectors do not influence reactor kinetics. Problems: small signals.

Principle of Detection 3 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Charged particle crossing diamond creates e-hpairs, To collect pairs the bias voltagehastobe applied across the diamond, Current pulses are generated on electrodes, To become measurable thesignalshavetobe amplified. Electrodes Charged Particle Diamond e-h Creation Amplifier V bias

Crystal Properties 4 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF High bandgap, low capacitance, high carrier mobility fast, low-noise signals cvd Diamond Si GaN 4H-SiC Bandgap[eV] 5.47.2 3.39 3.27 e-h creation energy[ev] 3 3.6 8-8.4 Displacement energy[ev] 43 3-20 -20 25 Electronmobility[µm 2 /V/ns] 200 50 0 80 Holemobility[µm 2 /V/ns] 260 45 20 2 Density[g/cm 3 ] 3.52 2.33 6.5 3.2 Resistivity[Ωcm] > 2.3 5 4 8 Breakdown field[mv/cm] 0.3 5 3-5 Dielectric constant 5.7.9 9.5 9.7

Signal Formation 5 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF ForkeVofdeposited energyn eh =77e-h pairs are created; Statistical uncertainty on created charge is F Neh (3%forkeV), wheref 0.08is diamond Fano factor; Charges drift towards electrodes generating currentfortimet c : I(t) = Q(t) d µe(x(t)) d-thickness; e,h-mobility: µ = d2 t c V bias

Time of Flight Technique 6 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Measure the coincidence between two subsequent neutron interactions: T n = T n + M n 2 ( d c t ) 2 T n -energylostinfirstinteraction, t-timeintervalbetweentwo interactions. Threshold deposited energy is critical: n h CDV minimalaccessibleneutronenergyt min n 5E thr, efficiencyloss ǫ(e thr )/ǫ(e thr =0) (T n /7E thr ) 2. d n CVD2 n

ToF Energy Resolution 7 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF AssumeToFresolution δ t =30psatMeV. AssumeE dep resolution δ E =50keV. Requires development of a new, high precision coincidence electronics. Edep resolution Distance resolution ToF resolution d=.2 cm E dep =0.2MeV d= cm δt n /T n δt n /T n d=2 cm d=3 cm - - T n MeV T n MeV

ToF Efficiency 8 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Geant4 simulations of the detector were performed, usingadsneutronflux 9 n/cm 2 /sand50kev detection threshold, attofdistanced =2cm(cm)integrated coincidence rate: 0.6 khz(2.5 khz), efficiency ǫ 2 A =5 6 (ǫ 2 A =2 5 ). Events 5 4 3 2-2 -3-4 -5-6 d=cm d=2cm -7 0.5.5 2 2.5 MeV E dep -8-9 -2 - T n MeV

Accidental Coincidences 9 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Assumingtriggerwindow t =ns: R acc =Rsingle 2 t =70kHz () 28(d=cm)-25(d=2cm)timeshigherthansignal rate. However, only 0.026 accidental signals appear in an opennsgate. General the trend of Signal-to-Noise-Ratio: SNR = πφ n d 2 t (2)

CVD Diamond Crystals M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Diamond Detectors Ltd. SO-274: 4.7 4.7mm 2 surfaceareaand 500 µm thick; Atomic impurities: N<5 ppb, B<<5 ppb(spectroscopic grade), SurfacescanRMSforside:.37nm,side2:0.7nm; DLC(-3 nm)/pt(50 nm)/au (0 nm) ohmic contacts, area22mm 2,C D =2.2pF; Brass/aluminum casing with two SMA-F connectors. HW GW cvd HW GW

Experimental Setup M. Osipenko INFN 2 Dicember 203 INFN-E/RILF FNG in D-D mode(2.5 MeV monocromatic neutron beam), neutronfluxof 6 n/cm 2 /s, twocvdcrystalswereplacedatdistanced =.2 cm, signals preamplified by fast transimpedance amplifiers(see R. Cardarelli talk) connected trough 5 mcabletothesecondaryamplifierp/s774. DAQ: NIM crate(power supplier, secondary amplifier), VME crate(5 Gs/s digitizer, controller/pc).

2 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF * Introduction ToF Experiment Conclusion * Pictures Two DDL diamonds attached

3 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF * Introduction ToF Experiment Conclusion * Results 20 coincidence events/540 s- expected 0.25 Hz, 5%accidentals( t =2ns)-asexpected, ToFis0.6ns,withtimingresolutionsof0.36ns(δ t =250 psoftwoamplifiersatmev)and0.ns(distance), observedpeakrmsis0.4ns,inagreementwith estimates(0%t n resolution). ADC channel [2 mv] 00 900 800 700 600 CVD CVD2 E dep =743 kev E dep =59 kev Events 25 20 5 Coincidence 500 5 400 0 50 0 50 200 250 300 350 400 Sample [0.2 ns] 0-25 -20-5 - -5 0 5 5 20 25 t ns

Results cont. 4 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF energy thresholds were set 0.25 MeV, deposited energy resolution 50 kev, only backscattered n were detected in CVD (threshold for forward n 7 27 kev), incvd2flatangulardistribution, θn CM >70, within covered energy range ToF variation < ps. 8 6 4 CVD CVD2-6 -7-8 Events 2 8 t ns -9-6 - 4-2 2-3 0 0 200 400 600 800 00 200 400 600 800 2000 Edep [kev] -4 550 600 650 700 750 800 850 900 950 00 CVD E dep [kev]

Amplifier Test 5 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF compared five fast amplifiers: DBA IV, CAEN A423, Cividec C2, Wisnam µta40 and Cividec C6, 24 Am(α,5MeV)and 90 Sr(β <2.3MeV)sources, CVD diamond detector read out independently from two sides, 5 Gs/s(2 GHz BW) digitizer recorded the signals. V G HV- 750 700 650 CVD V2 G2 HV+ ADC channel [2 mv] 600 550 500 450 400 350 300 250 χ 2 /N.d.F.=0.9 E dep =627 kev χ 2 /N.d.F.= E dep =5 kev 220 240 260 280 300 320 340 Sample [0.2 ns]

Amplifier Energy Resolution 6 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF measured noise level in terms of energy deposited in diamond, obtainedpeakshape5mev αfrom 24 Amsource, among fast amplifiers best resolution Cividec C6(0 MHzBW). FWHM of noise E dep [kev] 400 350 300 250 200 50 0 50 DBA IV CAEN A423 Cividec C2 Wisnam uta40 Cividec C6 Cividec Cx Events 5000 4500 4000 3500 3000 2500 2000 500 00 500 α 5.05 MeV DBA IV CAEN A423 Cividec C2 Wisnam uta40 Cividec C6 Cividec Cx 0 Amplifier 0 4600 4800 5000 5200 5400 E dep [kev]

Amplifier Timing Resolution 7 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF coincedence between two electrodes, 24 Am(α,5MeV)and 90 Sr(β <2.3MeV)sources, Cividec C6 has best timing resolution, energy dependence of timing resolution agrees with σ t = t rise S/N 2 β 0.8 MeV DBA IV CAEN A423 Cividec C2 Wisnam uta40 Cividec C6 200 00 Cividec C6 Events FWHM t [ps] 800 600 90 β Sr 400 200 270 ps/(e / MeV) dep α 24 Am - -0.5 0 0.5 t [ns] 0 3 E dep [kev]

8 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF * Introduction ToF Experiment Conclusion * Summary sccvd diamonds were proposed for ToF neutron spectrometer( 5 < φ n < 9 n/cm 2 /s), test measurement at FNG demonstrated feasibility of technique, number of commercial amplifiers were tested, noise level of existing amplifiers has to be improved by afactorof. Future: develop better signal amplifier, optimize detector geometry, test at FNG and research reactors.

Backup Slides 9 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF

Resolution vs. Distance 20 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Two500 µmcrystalsatdistanced; AssumeToFresolution δ t =0.2ns; AssumeE dep resolution δ E =50keV. T n =0.3 MeV T n = MeV T n =5 MeV d= cm δt n /T n δt n /T n d=2 cm d=3 cm - - - d cm T n MeV

Resolution Contributions 2 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Ford >2cmandT n >0.4MeVToFresolution dominates; Develop high precision coincidence technique; 25 ps resolution has been achieved with diamonds. Edep resolution Distance resolution ToF resolution Edep resolution Distance resolution ToF resolution δt n /T n δt n /T n - - d cm T n MeV

ToF Resolution Cont. 22 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF InregionofinterestToFvaryfrom0.5to7ns. T n =0. MeV T n = MeV T n =5 MeV t ns t ns d= cm d=2 cm d=3 cm - - d cm - - T n MeV

Conversion Cross Sections 23 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Hydrogen and Carbon have highest cross sections.

Conversion Efficiency 24 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Assuming % of range convertor thickness. ε conv -3-4 -5-6 -7-8 2 C H 6 Li(t) 6 Li(d) B 4 N -3-2 - T n MeV Deposited energy threshold not considered, Acceptance of diamonds seen from converter not included, %ofrange probably gives poor resolution.

Other Active Detectors 25 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF In fluxes < 2 n/cm 2 /s Diamond detector can substitute Fission Chamber as active monitor. Fission Diamond Chamber Detector ChargeMobility 0.3-0.4cm 2 /V/s 2000cm 2 /V/s Charge Collection time 5-7 µs 2- ns Counting Rate 20 khz MHz Size 4 mm 2 2 2mm 2 Converter U,Th,Pu H, Li, B Efficiencyat0.5MeV.barn 0.4barn( 6 Li) SignalSize 200fC 60fC( 6 Li) Spectroscopy unfolding direct( 6 Li) EnergyRange entire <7MeV( 6 Li)

26 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF * Introduction ToF Experiment Conclusion * Robustness Diamonds are radiation hard. RD42 Neutrons: up to 4 5 of4.8 MeVn/cm 2 0.25 MGy, Photons:upto MGy, MIPs(24 GeV p): upto4 5 p/cm 2.25MGy,

Signal Collection 27 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Electrode contacts can be ohmic or Schottcky (rectifying); Ohmic contacts: charge canflowthrough(tior Cr which form carbide at500 annealing followedbyptandau); Schottcky(rectifying) contacts: charge remain in detector bulk (e.g.al). φ s :C4.8-5.8eV(p-type); φ m :Al4.eV,Ti4.3eV,Cr4.5 ev,au5.ev,pt5.7ev; p-typeohmic: φ s < φ m

Signal Description 28 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Spacecharge(τ sc )andtrapping τ e,h lifetimes( 40ns): Drift velocity: I e,h (t) e ±t/τsc e,h t/τ e,h v drift = d t c Charge collection distance: ccd d = Q Q 0 d Q = I(t)dt 2τ e,h v drift E(x) I(t) pa V/d 9 8 7 6 5 4 3 2 (V-V c )/d e 0-2 - 0 2 3 4 5 6 t ns x /τ sc -/τ e e h -/τ sc -/τ h t c h d

* Appendix * For Further Reading I 29 M. Osipenko INFN 2 Dicember 203 INFN-E/RILF Edited by R.S. Sussmann CVD Diamond for Electronic Devices and Sensors. Wlley, 2009. D. Meier, CVD Diamond Sensors for Particle Detection and Tracking, CERN 999. H.Perneggeretal.,J.ofApp.Phys.97,073704(2005). P.Moritzetal.,Diam.Relat.Mater.,765(200). H. Frais-Kölbl, E. Griesmayer and H. Pernegger, Nucl. Inst. Meth. A535, 8(2004).